Assessment of the WRF-Hydro uncoupled hydro-meteorological model on flashy watersheds of the tropical island of New Caledonia (South-West Pacific)

Author(s):  
Arnaud Cerbelaud ◽  
Jérôme Lefèvre ◽  
Pierre Genthon ◽  
Christophe Menkes

<p>Situated in the South-West Pacific, New Caledonia is a tropical island dominated by a central mountain range and is subject to cyclones, regular intense precipitation events and flash-flooding. Recent fine-scaled projections of climate change in New Caledonia show that the frequency and intensity of extreme precipitation events could be reduced by ~ 20% by 2080-2100 [Dutheil <em>et al.</em>, 2020]. This paper investigates the ability of the WRF-Hydro/Noah-MP modelling framework to represent the hydrological regime of six watersheds in New Caledonia. A nearly 2-year long WRF ideal atmospheric forcing was completed with observed precipitations from 24 rain gauges using two rainfall spatial interpolation methods at 0.2 km-resolution. This study mainly seeks to calibrate the uncoupled WRF-Hydro/Noah-MP system as well as to evaluate its performance upon short and contrasted heavy rainfall events between 2012 and 2014. Particular attention was paid to (i) the sensitivity of calibration processes to rainfall spatial interpolation methods, (ii) the consistency in modelled soil moisture storage and (iii) the reliability of hydrograph separation provided by WRF-Hydro.</p><p>After automatic calibration relying upon the DDS algorithm [Tolson and Shoemaker, 2007], streamflow simulations show overall good performance with Nash–Sutcliffe efficiencies (NSE) greater than 0.6 on a 21-month period for all watersheds. Standard hydrological features of all studied watersheds are well reproduced. The quality of simulation is found to be decreasing with lower values of runoff coefficient. We show on three watersheds that spatial distribution of rainfall can highly condition the calibration process and thus greatly modify modelled soil moisture storage and in result the shape of simulated flash floods. WRF-Hydro’s hydrograph decomposition between surface and underground runoff is presented and compared with known characteristics of watersheds as well as with other quickflow/baseflow separation methods. To our knowledge, this work is the first attempt to use the uncoupled WRF-Hydro hydro-meteorological model for flash flood analysis in New Caledonia and opens a pathway to study multiple hydrological and climatic features in the region in the context of climate change.</p><p><strong>Keywords</strong>: hydro-meteorological modelling, WRF-Hydro, Noah-MP, flash flood, rainfall spatial interpolation, hydrograph separation, baseflow, New-Caledonia</p>

2017 ◽  
Vol 68 (11) ◽  
pp. 2123 ◽  
Author(s):  
I. Beveridge ◽  
T. H. Cribb ◽  
S. C. Cutmore

During a helminthological examination of teleost fish of Moreton Bay (Qld, Australia), 976 fish from 13 orders, 57 families and 133 species were examined and nine species of trypanorhynch metacestodes were identified. Callitetrarhynchus gracilis (Rudolphi, 1819) was the most frequently encountered species, found in 16 species of fish, with Callitetrarhynchus speciosus (Linton, 1897), Pterobothrium pearsoni (Southwell, 1929), Otobothrium alexanderi Palm, 2004, Otobothrium mugilis Hiscock, 1954, Otobothrium parvum Beveridge & Justine, 2007, Proemotobothrium southwelli Beveridge & Campbell, 2001, Pseudotobothrium dipsacum (Linton, 1897) and Heteronybelinia cf. heteromorphi Palm, 1999 occurring in fewer host species and at lower prevalences. Comparisons are made with studies elsewhere in the world and specifically within the South-west Pacific. Of the best studied regions in the South-west Pacific (Heron Island, Lizard Island, New Caledonia and now Moreton Bay), the fauna from Moreton Bay was found to be the most distinctive, with fauna from the three reef locations sharing 35–48% of species between sites and just 12–24% with Moreton Bay. The fauna of trypanorhynch cestodes from Lizard Island and New Caledonia was found to be the most similar.


2014 ◽  
Vol 122 ◽  
pp. 105-115 ◽  
Author(s):  
Marion Cuif ◽  
David Michael Kaplan ◽  
Jérôme Lefèvre ◽  
Vincent Martin Faure ◽  
Matthieu Caillaud ◽  
...  

2016 ◽  
Author(s):  
Sophie Bonnet ◽  
Melika Baklouti ◽  
Audrey Gimenez ◽  
Hugo Berthelot ◽  
Ilana Berman-Frank

Abstract. In marine ecosystems, N2 fixation provides the predominant external source of nitrogen (N) (140 ± 50 Tg N yr−1), contributing more than atmospheric and riverine inputs to the N supply. Yet the fate and magnitude of the newly-fixed N, or diazotroph-derived N (hereafter named DDN) in marine ecosystems is poorly understood. Moreover, it remains unclear whether the DDN is preferentially directly exported out of the photic zone, recycled by the microbial loop, and/or transferred into larger organisms, subsequently enhancing indirect particle export. These questions were investigated in the framework of the VAHINE (VAriability of vertical and tropHIc transfer of diazotroph derived N in the south wEst Pacific) project. Triplicate large volume (~50 m3) mesocosms were deployed in the tropical South West Pacific coastal ocean (New Caledonia) to maintain a stable water-mass without disturbing ambient light and temperature conditions. The mesocosms were intentionally fertilized with ~0.8 μM dissolved inorganic phosphorus (DIP) at the start of the experiment to stimulate diazotrophy. A total of 47 stocks, fluxes, enzymatic activities and diversity parameters were measured daily inside and outside the mesocosms by the 40 scientists involved in the project. The experiment lasted for 23 days and was characterized by two distinct and successive diazotroph blooms: a dominance of diatom-diazotroph associations (DDAs) during the first half of the experiment (days 2–14) followed by a bloom of UCYN-C during the second half of the experiment (days 15–23). These conditions provided a unique opportunity to compare the DDN transfer and export efficiency associated with different diazotrophs. Here we summarize the major experimental and modelling results obtained during the project and described in the VAHINE Special issue, in particular those regarding the evolution of the main standing stocks, fluxes and biological characteristics over the 23-days experiment, the contribution of N2 fixation to export fluxes, the DDN released to dissolved pool and its transfer to the planktonic food web (bacteria, phytoplankton, zooplankton). We then apply our Eco3M modelling platform further to infer the fate of DDN in the ecosystem and role of N2 fixation on productivity, food web structure and carbon export. Recommendations for future work are finally provided in the conclusion section.


Author(s):  
Yuri I. Kantor ◽  
Magalie Castelin ◽  
Alexander Fedosov ◽  
Philippe Bouchet

In the ancillariid genus Amalda, the shell is character rich and 96 described species are currently treated as valid. Based on shell morphology, several subspecies have been recognized within Amalda hilgendorfi, with a combined range extending at depths of 150–750 m from Japan to the South-West Pacific. A molecular analysis of 78 specimens from throughout this range shows both a weak geographical structuring and evidence of gene flow at the regional scale. We conclude that recognition of subspecies (richeri Kilburn & Bouchet, 1988, herlaari van Pel, 1989, and vezzaroi Cossignani, 2015) within A. hilgendorfi is not justified. By contrast, hilgendorfi-like specimens from the Mozambique Channel and New Caledonia are molecularly segregated, and so are here described as new, as Amalda miriky sp. nov. and A. cacao sp. nov., respectively. The New Caledonia Amalda montrouzieri complex is shown to include at least three molecularly separable species, including A. allaryi and A. alabaster sp. nov. Molecular data also confirm the validity of the New Caledonia endemics Amalda aureomarginata, A. fuscolingua, A. bellonarum, and A. coriolis. The existence of narrow range endemics suggests that the species limits of Amalda with broad distributions, extending, e.g., from Japan to Taiwan (A. hinomotoensis) or even Indonesia, the Strait of Malacca, Vietnam and the China Sea (A. mamillata) should be taken with caution.


2011 ◽  
Vol 8 (6) ◽  
pp. 10739-10780
Author(s):  
V. Ruiz-Villanueva ◽  
M. Borga ◽  
D. Zoccatelli ◽  
L. Marchi ◽  
E. Gaume ◽  
...  

Abstract. The 2 June 2008 flood-producing storm on the Starzel river basin in South-West Germany is examined as a prototype for organized convective systems that dominate the upper tail of the precipitation frequency distribution and are likely responsible for the flash flood peaks in this region. The availability of high-resolution rainfall estimates from radar observations and a rain gauge network, together with indirect peak discharge estimates from a detailed post-event survey, provides the opportunity to study the hydrometeorological and hydrological mechanisms associated with this extreme storm and the ensuing flood. Radar-derived rainfall, streamgauge data and indirect estimates of peak discharges are used along with a distributed hydrologic model to reconstruct hydrographs at multiple locations. The influence of storm structure, evolution and motion on the modeled flood hydrograph is examined by using the "spatial moments of catchment rainfall" (Zoccatelli et al., 2011). It is shown that downbasin storm motion had a noticeable impact on flood peak magnitude. Small runoff ratios (less than 20%) characterized the runoff response. The flood response can be reasonably well reproduced with the distributed hydrological model, using high resolution rainfall observations and model parameters calibrated at a river section which includes most of the area impacted by the storm.


2016 ◽  
Vol 16 (5) ◽  
pp. 1467-1476 ◽  
Author(s):  
Yong Peng ◽  
Jinggang Chu ◽  
Xinguo Sun ◽  
Huicheng Zhou ◽  
Xiaoli Zhang

Many hydraulic projects such as reservoirs, ponds and paddy fields as well as soil and water conservation engineering projects have been constructed to improve utilization of water resources upstream of the Wudaogou station basin in Northeast China in recent years. As a result, the local hydrological characteristics of the basin and the flood runoff and process have been changed. These changes in the basin characteristics make basin hydrological forecasting more difficult. In order to model and assess this situation, the TOPMODEL, which includes the dynamic soil moisture storage capacity (DSMSC-TOPMODEL), is used in this study to simulate the flood impact of hydraulic projects. Furthermore, the Bayesian method is used to evaluate model parameter uncertainty and assess the TOPMODEL's performance over the basin. Flood simulation results show that accuracy is significantly improved when the stock version of TOPMODEL is replaced with DSMSC-TOPMODEL, with the qualified ratio of forecasting runoff yield increasing from 65% in the former to 88% in the latter. Moreover, these flood simulations are more suitable for helping observers visualize the process.


Sign in / Sign up

Export Citation Format

Share Document