A discussion of the (re)activation of basement structures during multi-phase shortening in thin- and thick-skinned styles

Author(s):  
Nicolas Molnar ◽  
Susanne Buiter

<p>Shortening in fold-and-thrust belts can be accommodated with little or substantial basement involvement, with the former, thin-skinned, style arguably being the more common (Pfiffner, GSA Special Paper, 2006). Experimental studies on thin-skinned fold-and-thrust belts have confirmed critical taper theory and have highlighted the roles of bulk rheology, embedded weak layers, décollement strength, and surface processes in structural evolution. However, analogue models of thick-skinned fold-and-thrust belts are less common, which may be related to practical challenges involved in shortening thick layers of brittle materials. Here we focus on basement fault reactivation, which has been suggested for several fold-and-thrust belts, such as the Swiss Alps, the Laramide belt in North America and the Sierras Pampeanas in South America, which show evidence of deep-rooted thrust systems, pointing to a thick-skinned style of shortening.</p><p>Within an orogenic system, the shortening style may change between thin- and thick-skinned in space (foreland to hinterland) and time. This raises the question how inherited structures from one shortening phase may influence the next. We aim to use analogue experiments of multi-phase shortening to discuss the effects of deep-seated shortening-related inherited structures, such as thrusts and basement topography, on the structural evolution of fold-and-thrust belts.</p><p>We employ a push-type experimental apparatus that can impose shortening in both thick- and thin-skinned style. The device has two independently moving backstops, permitting to change between these shortening styles over time, allowing the simulation of multiple contractional scenarios. We start with an initial stage of thick-skinned shortening, followed by either thin- or thick-skinned reactivation. We use quartz sand to simulate crustal materials and microbeads for embedded weak (sedimentary) layers. Surface and lateral strain, as well as topography, is quantified using a high-resolution particle imaging velocimetry and digital photogrammetry monitoring system.</p><p>We will present preliminary results of this innovative experimental approach with the objective of discussing to what extent pre-existing conditions in the basement control the geometric, kinematic, and mechanical evolution of thick-skinned and basement-involved thin-skinned tectonics. In this presentation, we hope for a discussion of mechanisms of localisation of shortening in brittle analogue models, of sequences of thin- and thick-skinned deformation expected during multi-phase shortening, and comparisons to ongoing research and natural observations. Questions we aim to discuss are: Can weaknesses and anisotropies within the basement influence and control later structural evolution? Are pre-existing structures, such as thrusts or shear zones within the basement, responsible for subsequent fault nucleation, thin-skinned folding or basement uplift? What role does the rheology of the basement-cover interface play in the reactivation of basement thrusts? Can we model these reactivations with an analogue setup?</p>

2019 ◽  
Author(s):  
Richard Spitz ◽  
Arthur Bauville ◽  
Jean-Luc Epard ◽  
Boris J. P. Kaus ◽  
Anton A. Popov ◽  
...  

Abstract. Fold-and-thrust belts and associated tectonic nappes are common in orogenic regions. They exhibit a wide variety of geometries and often a considerable along-strike variation. However, the mechanics of fold-and-thrust belt formation and the control of the initial geological configuration on this formation are still incompletely understood. Here, we apply three-dimensional (3D) thermo-mechanical numerical simulations of the shortening of the upper crustal region of a passive margin to investigate the control of 3D laterally variable inherited structures on the fold-and-thrust belt evolution and associated nappe formation. We consider tectonic inheritance by applying an initial model configuration with horst and graben structures having laterally variable geometry and with sedimentary layers having different mechanical strength. We use a visco-plastic rheology with temperature dependent flow laws and a Drucker-Prager yield criterion. The models show the folding, detachment and horizontal displacement of sedimentary units, which resemble structures of fold and thrust nappes. The models further show the stacking of nappes. The detachment of nappe-like structures is controlled by the initial basement and sedimentary layer geometry. Significant horizontal transport is facilitated by weak sedimentary units below these nappes. The initial half-graben geometry has a strong impact on the basement and sediment deformation. Generally, deeper half-grabens generate thicker nappes and stronger deformation of the neighboring horst while shallower half-grabens generate thinner nappes and less deformation in the horst. Horizontally continuous strong sediment layers, which are not restricted to inital graben structures, cause detachment folding and not overthrusting. The amplitude of the detachment folds is controlled by the underlying graben geometry. A mechanically weaker basement favors the formation of fold nappes while stronger basement favors thrust sheets. The applied model configuration is motivated by the application of the 3D model to the Helvetic nappe system of the French-Swiss Alps. Our model is able to reproduce several first-order structural features of this nappe system, namely (i) closure of a half-graben and associated formation of the Morcles and Doldenhorn nappes, (ii) the overthrusting of a nappe resembling the Wildhorn and Glarus nappes and (iii) the formation of a nappe pile resembling the Helvetic nappes resting above the Infrahelvetic complex. Furthermore, the finite strain pattern, temperature distribution and timing of the 3D model is in broad agreement with data from the Helvetic nappe system. Our model, hence, provides a first-order 3D reconstruction of the tectonic evolution of the Helvetic nappe system based on thermo-mechanical deformation processes.


2021 ◽  
Author(s):  
Youseph Ibrahim ◽  
Patrice Rey

<p>The stacking of thrust sheets and mass transfer of sediment during fold and thrust belt accretion imposes a load on the basement and underlying mantle. This load induces an isostatic adjustment through a flexural response, which may also contribute to the overall architecture of the fold and thrust belt. Whereas plate kinematics imposes its tempo to evolving fold and thrust belts, the rheology of the mantle controls the tempo of the isostatic flexure. Using two-dimensional high-resolution numerical experiments, we explore how the interplay between the tectonic compressional rate and the isostatic flexural rate influences the structural evolution and final architecture of fold and thrust belts. </p><p>We run a suite of numerical experiments using the well-tested code Underworld. Our geological model is mapped over a 42 km by 16 km numerical grid, with a cell resolution of 80 m. The geological model consists from top to bottom of  ‘sticky air’, 4 km of sediment that alternates in competence at 500 m intervals, a 3 km thick basement, and a basal layer which - in combination with a basal kinematic boundary condition - controls the amount of isostatic flexure. Materials have a mechanical behavior that results from elasto-visco-plastic rheology. The pressure at the base of the model is held constant, and the vertical velocity is updated at each timestep. The amount of material entering or exiting the model at each point along the base scales with the density of the basal layer, which is used to control the isostatic rate. Sedimentation and erosion are self-consistent through mechanical erosion and a hillslope diffusion law. Our models show that as the ratio between tectonic and flexural rates decreases (i.e. flexure gets faster), fold and thrust belts become narrower, lower in elevation, and structurally more complex. We compare these results with natural analogs including the Cordilleran and Jura fold and thrust belts.</p>


2020 ◽  
Author(s):  
Alejandro Jiménez-Bonilla ◽  
Ana Crespo ◽  
Inmaculada Expósito ◽  
Juan Carlos Balanyá ◽  
Manuel Díaz-Azpíroz ◽  
...  

<p>Although analogue models have successfully simulated many different types of arcuate fold-and-thrust belts, we were able to design a backstop whose curvature ratio diminished and its protrusion grade increased during experiments reproducing several kinematic features of progressive arcs never seen before 2016. General models were made up of an homogeneous silicone layer, where detachments tend to localize, overlain by a sand layer. They accomplished to simulate the overall structure and kinematics of fold-and-thrust belts of Mediterranean Arcs, especially that of the Gibraltar arc: (1) highly divergent thrust transport directions, (2) arc-perpendicular normal and strike-slip faults accommodating arc-lengthening, (3) transpressive and transtensional bands oblique to the main trend located in the lateral zones, (4) vertical axis-rotations up to 70º and (5) block individualization that rotated independently clockwise and counterclockwise in the left and right arc limbs, respectively.</p><p>However, the ductile layer is neither continuous nor homogeneous in natural cases, such that pinch-outs and diapirs previous to deformation are frequently found across and along strike. Thus, we have modified our original set-up including silicone pinch-outs and different sizes of silicone diapirs. Where silicone pinch-outs were subparallel to the apex movement, differences in the structural style along the foreland thrust-belt occurred. A forward thrust system over frictional detachments (no silicone), or wide, double verging thrust-systems over ductile detachments (with silicone) developed. Differential displacement between both types of thrust-belts was accommodated by transfer zones. Where silicone pinch-outs were perpendicular to the apex movement, the deformation front propagated up to the pinch-out, where it stopped and the thrust-system thickened up to its subsequent collapse. In models with pre-existing diapirs, first thrust and strike-slip faults nucleated close to diapirs and linked them. When deformation proceeded, all diapirs were added and deformed within the fold-and-thrust belts.</p><p>We also made experiments to analyze the ductile deformation and the influence of the brittle layer (sand) thickness. In only silicone models, a homogeneous deformation was observed at the grid scale, where each square was deformed by mostly simple shear in the lateral parts whilst by mostly pure shear in its most frontal part of the models. When a sand layer was sieved on top of the silicone layer, discrete structures developed. Although all models showed strain partitioning between arc-perpendicular shortening and arc-parallel stretching, as the brittle layer thickness increased, fold wavelength increased.</p><p>All these models show the high complexity derived from the different strain partitioning modes and the strain localization along and across-strike fold-and-thrust belts in progressive arcs. They can be extremely helpful to better understand this kind of arcuate orogens that are also the most frequent in nature. Even though these models were previously carried out to simulate the evolution of fold-and-thrust belts of Mediterranean arcs, they can also shed lights for the evolution of many others progressive arcs.</p>


2016 ◽  
Vol 187 (2) ◽  
pp. 83-104 ◽  
Author(s):  
Josselin Berthelon ◽  
William Sassi

Abstract Using the geologist’s interpretation of 6 published balanced cross-sections in the fold and thrust belts of the northwestern Mediterranean, a comparative analysis of the interpreted subsurface structural architecture is used to address the links between the structural style and the mechanics of fold and thrust emplacement. For each cross-section example, the geo-dataset and the methods used by the interpreters are different in quantity and quality. Here we have examined how useful is the content of information of each cross-section to constrain the structural evolution scenario. Each interpretation is examined according to considerations of the mechanics of sedimentary basin deformation and how uncertain is the extrapolation of fault trajectory at depth. It is shown that each case reveals a particular type of structural style: thin-skin or thick skin tectonics, fault-related folding, pre-existing fault pattern. The present structural analysis is used to determine for each cross-section the nature of the mechanical problem to address that will reduce uncertainty on the geologic scenario reconstruction. The proposed mechanical boundary conditions could serve to develop analog or numerical models that aim at testing the mechanical validity of the structural scenario of fold and thrust emplacement.


1994 ◽  
Vol 31 (7) ◽  
pp. 1064-1080 ◽  
Author(s):  
D. E. Moser

The amphibolite-facies central Wawa gneiss domain (CWGD) preserves structures that developed at the mid-crustal level of the ca. 2.7 Ga Abitibi–Wawa orogen in the southern Superior Province. The relative ages of these domainal structures are documented and brackets on their absolute ages established using existing U–Pb age data. Correlation of tectonic events within the CWGD, and comparison of these events with the evolution of other structural levels of the orogen, has led to subdivision of orogenesis into five stages. During stage 1 (2700–2680 Ma), 2.9 and 2.7 Ga rocks were tightly folded and (or) thrusted at all crustal levels in at least one thick-skinned compression event. During stage 2 (2680–2670 Ma), folding and thrusting of Timiskaming-age sediments at high levels of the orogen was thin-skinned and had no effect on CWGD gneisses. During stage 3 (2670–2660 Ma), while the upper crust was relatively stable, a 1 km thick package of volcanics and sediments, the Borden Lake belt, was underthrust northwards to depths of 30 km and in-folded with orthogneiss of the CWGD. During stage 4 (2660–2637 Ma), coeval east–west extension and granulite metamorphism of the middle crust produced gently dipping shear zones that overprinted earlier fold structures in the CWGD and lower structural levels of the orogen. This took place with minimal effect on the upper crust. Stage 5 (2630–2580 Ma) marks a period of east–west shortening and (or) fault reactivation in the Kapuskasing uplift and upper-crustal greenstone belts that allowed penetration of deep-crustal metamorphic fluids into the latter. In general, analysis of the structural evolution of the CWGD indicates that deformation and metamorphism in the middle crust of the Abitibi–Wawa orogen outlasted that at upper-crustal levels, resulting in the generally shallower dips of planar fabrics in the deeper structural levels of the Kapuskasing uplift crustal cross section.


2018 ◽  
Vol 114 ◽  
pp. 206-221 ◽  
Author(s):  
Oliver B. Duffy ◽  
Tim P. Dooley ◽  
Michael R. Hudec ◽  
Martin P.A. Jackson ◽  
Naiara Fernandez ◽  
...  

2021 ◽  
Author(s):  
Ferdinando Musso Piantelli ◽  
David Mair ◽  
Marco Herwegh ◽  
Alfons Berger ◽  
Eva Kurmann ◽  
...  

<p>Inversion of passive margins and their transportation into fold-and-thrust belts is a critical stage of mountain building processes and their structural interpretation is fundamental for understanding collisional orogens. Due to the multitude of parameters that influence their formation (e.g. the interaction between sedimentary cover and basement, the mechanical stratigraphy or the rheology of different rock types) as well as along-strike internal variations, a single cross-sectional view is insufficient in exploring the 3D evolution of a fold-and-thrust belt. Hence, a 3D geological characterization is required to better comprehend such complex systems. Based on a detailed digital map, a 3D structural model of the current tectonic situation and sequential retrodeformation, we elaborate the 3D evolution of a part of the former European passive continental margin. In this setting, we focus on the Doldenhorn Nappe (DN) and the underlying western Aar massif (external Central Alps, Switzerland). The DN is part of the Helvetic nappe system and consists of a large-scale recumbent fold with a thin inverted limb of intensively deformed sediments (Herwegh and Pfiffner 2005). The sedimentary rocks of the DN were deposited in Mesozoic-Cenozoic times in a small-sized basin, which has been inverted during the compression of the Alpine orogeny (Burkhard 1988). Along NNW-SSE striking geological cross-sections, restoration techniques reveal the original asymmetric triangular shape of the DN basin and how the basin has been exhumed from ~ -12 km (Berger et al. 2020) to its present position at 4km elevation above sea level throughout several Alpine deformation stages. Moreover, the model allows to visualize the current structural position of the DN and the massif as well as the geometric and overprinting relationships of the articulated deformation sequence that shaped the investigated area throughout the Alpine evolution. Here we document that: (i) the DN is a strongly non-cylindrical recumbent fold that progressively pinches out toward the NE; (ii) significant along-strike (W-E) stratigraphy thickness variations are reflected in structural variations from a single basal thrust deformation (W) to an in-sequence thrust deformation (E); and (iii) the progressive exhumation of the basement units towards the E and thrusting towards the N. In this context, special emphasis is given to illustrate how three-dimensional geometry of inherited pre-orogenic structures (e.g., Variscan-Permian and rifting related basement cover structures) play a key role in the structural style of fold-and-thrust belts. In summary, today’s structural position of the DN is the result of the inversion of a small basin in an early stage of thrusting, which was followed by sub-vertical buoyancy driven exhumation of the Aar massif and subsequent thrust related shortening. All three stages are deeply coupled with an original non-cylindrical shape of the former European passive continental margin.</p>


2021 ◽  
Author(s):  
Pablo Granado ◽  
Pablo Santolaria ◽  
Elizabeth Wilson ◽  
Oriol Ferrer ◽  
Josep Anton Muñoz

<p>Salt and related structures have a strong influence on the formation of extensional basins during lithospheric stretching and thermal subsidence at rifted margins. Salt significantly influences as well the structural styles and kinematics of fold-and-thrust belts. We aim to characterize the structure of inverted minibasins and salt-influenced fold-and-thrust belts, but the challenge is to understand, and to match, the present day contractional structures with reasonable pre-orogenic configurations. Yet, we still lack proper understanding on the development of these salt-sediment systems and particularly, how salt tectonics is initially triggered and evolves through space and time. Two fundamental triggering mechanisms on rift to passive margin salt tectonics are known: (1) extension by gravitational collapse, and (2) differential loading. Key questions are: do these mechanisms occur at the same time or does one commonly follow the other? Which one is first and which one dominates? Does it depend on the location and timing of deformation on the passive margin? Which are the stratigraphic evidences and structural geometries that may help us to answer these questions? Recognizing the initial structural geometries of these minibasins once they have been incorporated into a fold and thrust belt is challenging but of paramount importance.</p><p>In this contribution we address some of these questions by showing a brief historical review of concepts and show end-member analogue models of fold-and-thrust belts developed from the inversion and incorporation of rift to passive margin salt basins. Our work is inspired by field observations from the Pyrenees and the Northern Calcareous Alps, as well as from present day continental margins.</p>


Sign in / Sign up

Export Citation Format

Share Document