Model-based closure experiments with optical particle counters for dust-like aerosols

Author(s):  
Josef Gasteiger ◽  
Adrian Walser ◽  
Maximilian Dollner ◽  
Marilena Teri ◽  
Bernadett Weinzierl

<div> <div></div> </div><div><!-- COMO-HTML-CONTENT-START --> <p>The size distribution of desert dust is a central parameter, e.g., for the dust climate effect and the fertilization of oceans and rain forests. The uncertainties of size distribution measurements, however, are large for which the nonsphericity of dust particles is a major reason. Optical particle counters (OPCs) are frequently used for size distribution measurements and possible reasons for uncertainties include (a) the fact that nonspherical dust particles fly with individual orientations through the sampling volume of the OPC while the scattering signals and derived sizes depend on particle orientation, (b) the variability of particle shape, and (c) uncertainties about which definition of particle size is best suited for nonspherical dust.</p> <p>To test the consistency between OPC measurements and independent measurements with other instruments types (e.g., a nephelometer or a lidar) closure experiments can be performed. In such experiments, size distributions derived from OPC measurements are used as input for model calculations of specific optical parameters which then are compared to independent measurements of the same optical parameters (e.g. scattering or backscattering coefficient) of the same aerosol. Deviations have been reported in the literature for desert dust. These deviations may be caused by the particle nonsphericity affecting the derivation of size distributions from OPC as indicated above but may also have other causes, e.g., using a wrong refractive index or assuming spherical particles for calculating the specific optical parameters. So far, the OPC nonsphericity effect has not been investigated in detail. A better understanding of this effect would be helpful for our understanding of size distribution uncertainties and of reasons for deviations in closure experiments.</p> <p>In order to gain insight into the OPC nonsphericity effect, we performed simulations for different combinations of OPCs and instruments measuring specific optical parameters. Irregular dust-like shapes over a wide size range and different refractive indices were considered. Firstly, the deviations of the derived sizes from the original particle sizes were analyzed. Secondly, the derived sizes were used for Mie simulations of the optical parameters and the deviations from those of the original irregularly-shaped particle were calculated. In this respect, e.g., nephelometer responses and lidar-relevant parameters were simulated to reproduce possible closure experiments. These results will be compared to measurement-based closure experiments performed during field campaigns or in a laboratory in order to investigate how well the OPC nonsphericity effect explains observed discrepancies.</p> <p>The simulated closure experiments show, for example, an overestimation of the scattering coefficient at λ=532nm by about 5% to 34% (depending on size range) when using size distributions derived from the DMT CAS instrument (λ=658nm, 4°-12° scattering angle) assuming non-absorbing dust particles. Using the TSI OPS model 3330 (λ=660nm, 30°-150° scattering angle) deviations in the range from -16% to +16% are found.</p> </div>

2020 ◽  
Vol 500 (3) ◽  
pp. 2979-2985
Author(s):  
Xiaodong Liu ◽  
Jürgen Schmidt

ABSTRACT It is expected since the early 1970s that tenuous dust rings are formed by grains ejected from the Martian moons Phobos and Deimos by impacts of hypervelocity interplanetary projectiles. In this paper, we perform direct numerical integrations of a large number of dust particles originating from Phobos and Deimos. In the numerical simulations, the most relevant forces acting on the dust are included: Martian gravity with spherical harmonics up to fifth degree and fifth order, gravitational perturbations from the Sun, Phobos, and Deimos, solar radiation pressure, as well as the Poynting–Robertson drag. In order to obtain the ring configuration, simulation results of various grain sizes ranging from submicrometres to 100 μm are averaged over a specified initial mass distribution of ejecta. We find that for the Phobos ring grains smaller than about 2 μm are dominant; while the Deimos ring is dominated by dust in the size range of about 5–20 μm. The asymmetries, number densities, and geometric optical depths of the rings are quantified from simulations. The results are compared with the upper limits of the optical depth inferred from Hubble observations. We compare to previous work and discuss the uncertainties of the models.


2014 ◽  
Vol 7 (3) ◽  
pp. 839-858 ◽  
Author(s):  
M. Taylor ◽  
S. Kazadzis ◽  
E. Gerasopoulos

Abstract. To date, size distributions obtained from the aerosol robotic network (AERONET) have been fit with bi-lognormals defined by six secondary microphysical parameters: the volume concentration, effective radius, and the variance of fine and coarse particle modes. However, since the total integrated volume concentration is easily calculated and can be used as an accurate constraint, the problem of fitting the size distribution can be reduced to that of deducing a single free parameter – the mode separation point. We present a method for determining the mode separation point for equivalent-volume bi-lognormal distributions based on optimization of the root mean squared error and the coefficient of determination. The extracted secondary parameters are compared with those provided by AERONET's Level 2.0 Version 2 inversion algorithm for a set of benchmark dominant aerosol types, including desert dust, biomass burning aerosol, urban sulphate and sea salt. The total volume concentration constraint is then also lifted by performing multi-modal fits to the size distribution using nested Gaussian mixture models, and a method is presented for automating the selection of the optimal number of modes using a stopping condition based on Fisher statistics and via the application of statistical hypothesis testing. It is found that the method for optimizing the location of the mode separation point is independent of the shape of the aerosol volume size distribution (AVSD), does not require the existence of a local minimum in the size interval 0.439 μm ≤ r ≤ 0.992 μm, and shows some potential for optimizing the bi-lognormal fitting procedure used by AERONET particularly in the case of desert dust aerosol. The AVSD of impure marine aerosol is found to require three modes. In this particular case, bi-lognormals fail to recover key features of the AVSD. Fitting the AVSD more generally with multi-modal models allows automatic detection of a statistically significant number of aerosol modes, is applicable to a very diverse range of aerosol types, and gives access to the secondary microphysical parameters of additional modes currently not available from bi-lognormal fitting methods.


2013 ◽  
Vol 6 (6) ◽  
pp. 10571-10615
Author(s):  
M. Taylor ◽  
S. Kazadzis ◽  
E. Gerasopoulos

Abstract. To date, size distributions obtained from the aerosol robotic network have been fit with bi-lognormals defined by six secondary microphysical parameters: the volume concentration, effective radius, and the variance of fine and coarse particle modes. However, since the total integrated volume concentration is easily calculated and can be used as an accurate constraint, the problem of fitting the size distribution can be reduced to that of deducing a single free parameter – the mode separation point. We present a method for determining the mode separation point for equivalent-volume bi-lognormal distributions based on optimisation of the root mean squared error and the coefficient of determination. The extracted secondary parameters are compared with those provided by AERONET's Level 2.0 Version 2 inversion algorithm for a set of benchmark dominant aerosol types including: desert dust, biomass burning aerosol, urban sulphate and sea salt. The total volume concentration constraint is then also lifted by performing multi-modal fits to the size distribution using nested Gaussian mixture models and a method is presented for automating the selection of the optimal number of modes using a stopping condition based on Fisher statistics and via the application of statistical hypothesis testing. It is found that the method for optimizing the location of the mode separation point is independent of the shape of the AVSD, does not require the existence of a local minimum in the size interval 0.439 μm ≤ r ≤ 0.992 μm, and shows some potential for optimizing the bi-lognormal fitting procedure used by AERONET particularly in the case of desert dust aerosol. The AVSD of impure marine aerosol is found to require 3 modes. In this particular case, bi-lognormals fail to recover key features of the AVSD. Fitting the AVSD more generally with multi-modal models allows automatic detection of a statistically-significant number of aerosol modes, is applicable to a very diverse range of aerosol types, and gives access to the secondary microphysical parameters of additional modes currently not available from bi-lognormal fitting methods.


2021 ◽  
Author(s):  
Saliha Eren ◽  
Ingrid Mann

<p>This presentation is related to model calculations of the circumsolar dust brightness that is seen in the F-corona and inner Zodiacal light. We calculate the brightness integral that includes the size distribution of the interplanetary dust, the spatial distribution, and the scattering properties. The scattering properties are estimated with Mie calculations of spherical particles consisting of astronomical silicate. We consider different size distributions of the dust particles with sizes between 1 nanometre - 100 micrometre. It was recently discussed that the extension of the dust-free zone can be inferred from the slope of the F-corona brightness seen in new observations received from the WISPR instrument on the NASA Parker Solar Probe (Stenborg et al., 2020). We, therefore, investigate the influence of the dust-free zone on the brightness and compare it to the influence that the dust size distribution has.</p><p>References</p><p>1. G. Stenborg, R. A. Howard, P. Hess, B. Gallagher, PSP/WISPR observations of dust density depletion near the Sun I. Remote observations to 8 Rsol from an observer between 0.13-0.35 AU, A&A, Forthcoming article, 2020. DOI: 10.1051/0004-6361/202039284</p>


1984 ◽  
Vol 143 ◽  
pp. 387-411 ◽  
Author(s):  
I. A. Valioulis ◽  
E. J. List ◽  
H. J. Pearson

Hunt (1982) and Friedlander (1960a, b) used dimensional analysis to derive expressions for the steady-state particle-size distribution in aerosols and hydrosols. Their results were supported by the Monte Carlo simulation of a non-interacting coagulating population of suspended spherical particles developed by Pearson, Valioulis & List (1984). Here the realism of the Monte Carlo simulation is improved by accounting for the modification to the coagulation rate caused by van der Waals', electrostatic and hydrodynamic forces acting between particles. The results indicate that the major hypothesis underlying the dimensional reasoning, that is, collisions between particles of similar size are most important in determining the shape of the particle size distribution, is valid only for shear-induced coagulation. It is shown that dimensional analysis cannot, in general, be used to predict equilibrium particle-size distributions, mainly because of the strong dependence of the interparticle force on the absolute and relative size of the interacting particles.


1981 ◽  
Vol 54 (4) ◽  
pp. 882-891 ◽  
Author(s):  
C. D. Shuster ◽  
J. R. Schroeder ◽  
D. McIntyre

Abstract The two techniques examined in this work yield information about the particle size distribution of the latexes studied. The ease of measurement is improved over previous methods used on broadly distributed latexes. The TPC curves for both the natural and synthetic latexes correlate with the centrifuge curves. Both techniques show the Hevea to have larger particles than the guayule. The techniques also show SBR latex samples 1 and 2 to have larger particles than samples 3 and 4. The TPC is useful only for particles between 0.3 µm and 20 µm in size. The centrifuge can be used for any size range of particles by altering the rotor speed or eluant density. By employing the proper mathematics, these data could be easily converted from optical density distributions to particle size distributions.


2021 ◽  
Author(s):  
Stavros Amanatidis ◽  
Yuanlong Huang ◽  
Buddhi Pushpawela ◽  
Benjamin C. Schulze ◽  
Christopher M. Kenseth ◽  
...  

Abstract. Ambient aerosol size distributions obtained with a compact, scanning mobility analyzer, the Spider DMA, are compared to those obtained with a conventional mobility analyzer, with specific attention to the effect of mobility resolution on the measured size distribution parameters. The Spider is a 12-cm diameter radial differential mobility analyzer that spans the 10–500 nm size range with 30s mobility scans. It achieves its compact size by operating at a nominal mobility resolution R = 3 (sheath flow = 0.9 L/min, aerosol flow = 0.3 L/min), in place of the higher sheath-to-aerosol flow commonly used. The question addressed here is whether the lower resolution is sufficient to capture the dynamics and key characteristics of ambient aerosol size distributions. The Spider, operated at R = 3 with 30s up and down scans, was collocated with a TSI 3081 long-column mobility analyzer, operated at R = 10 with a 360s sampling duty cycle. Ambient aerosol data were collected over 26 consecutive days of continuous operation, in Pasadena, CA. Over the 20–500 nm size range, the two instruments exhibit excellent correlation in the total particle number concentrations and geometric mean diameters, with regression slopes of 1.13 and 1.00, respectively. Our results suggest that particle sizing at a lower resolution than typically employed is sufficient in obtaining the key properties of ambient size distributions.


2013 ◽  
Vol 6 (6) ◽  
pp. 10955-11010
Author(s):  
M. Taylor ◽  
S. Kazadzis ◽  
A. Tsekeri ◽  
A. Gkikas ◽  
V. Amiridis

Abstract. In order to exploit the full-Earth viewing potential of satellite instruments to globally characterise aerosols, new algorithms are required to deduce key microphysical parameters like the particle size distribution and optical parameters associated with scattering and absorption from space remote sensing data. Here, a methodology based on neural networks is developed to retrieve such parameters from satellite inputs and to validate them with ground-based remote sensing data. For key combinations of input variables available from MODIS and OMI Level 3 datasets, a grid of 100 feed-forward neural network architectures is produced, each having a different number of neurons and training proportion. The networks are trained with principal components accounting for 98% of the variance of the inputs together with principal components formed from 38 AERONET Level 2.0 (Version 2) retrieved parameters as outputs. Daily-averaged, co-located and synchronous data drawn from a cluster of AERONET sites centred on the peak of dust extinction in Northern Africa is used for network training and validation, and the optimal network architecture for each input parameter combination is identified with reference to the lowest mean squared error. The trained networks are then fed with unseen data at the coastal dust site Dakar to test their simulation performance. A NN, trained with co-located and synchronous satellite inputs comprising three aerosol optical depth measurements at 470, 500 and 660 nm, plus the columnar water vapour (from MODIS) and the modelled absorption aerosol optical depth at 500 nm (from OMI), was able to simultaneously retrieve the daily-averaged size distribution, the coarse mode volume, the imaginary part of the complex refractive index, and the spectral single scattering albedo – with moderate precision: correlation coefficients in the range 0.368 ≤ R ≤ 0.514. The network failed to recover the spectral behaviour of the real part of the complex refractive index with only 39–45% of the data falling within the acceptable level of uncertainty relative to ground-truth data at the daily timescale. In the context of Saharan desert dust, this new methodological approach appears to offer some potential for moderately accurate daily retrieval of previously inaccessible aerosol parameters from space.


1968 ◽  
Vol 12 ◽  
pp. 87-96
Author(s):  
R. W. Gould ◽  
S. R. Bates

AbstractIt has been recently shown that particle size distributions can be determined from small angle x-ray scattering data. Size distributions have previously been measured in aluminum-zinc and aluminum-silver alloys containing spherical Guinier-Preston zones. Inorder to obtain the size distribution it is only necessary to calculate the Guinier radius and the Porod radius.Dispersion hardened nickel alloys containing small spherical particles of thoria appear to be amenable to this type of analysis. A nickel-20% chromium-2% ThO2 alloy was selected for this study. The particle size distribution obtained by small angle x-ray scattering is compared with the transmission electron microscopy results found in the literature.


2018 ◽  
Author(s):  
Jamie R. Banks ◽  
Kerstin Schepanski ◽  
Bernd Heinold ◽  
Anja Hünerbein ◽  
Helen E. Brindley

Abstract. Satellite imagery of atmospheric mineral dust is sensitive to the optical properties of the dust, governed by the mineral refractive indices, particle size, and particle shape. In infrared channels the imagery is also sensitive to the dust layer height and to the surface and atmospheric environment. Simulations of mineral dust in infrared Desert Dust imagery from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) have been performed, using the COSMO-MUSCAT (COSMO: COnsortium for Small-scale MOdelling; MUSCAT: MUltiScale Chemistry Aerosol Transport Model) dust transport model and the Radiative Transfer for TOVS (RTTOV) program, in order to investigate the sensitivity of the imagery to assumed dust properties. This paper introduces the technique and performs initial validation and comparisons with SEVIRI measurements over North Africa for daytime hours during the six months of the Junes and Julys of 2011–2013. Using T-matrix scattering theory and assuming the dust particles to be spherical or spheroidal, wavelength- and size-dependent dust extinction values are calculated for a number of different dust refractive index databases, along with several values of the particle aspect ratio, denoting the particle shape. It is found that spherical particles do not appear to be sufficient to describe fully the resultant colour of the dust in the infrared imagery. Comparisons of SEVIRI and simulation colours indicate that of the dust types tested, the dust refractive index dataset produced by Volz (1973) shows the most similarity in the colour response to dust in the SEVIRI imagery, although the simulations have a smaller range of colour than do the observations. It is also found that the thermal imagery is most sensitive to intermediately sized particles (radii between 0.9 and 2.6 μm): larger particles are present in too small a concentration in the simulations, as well as with insufficient contrast in extinction between wavelength channels, to have much ability to perturb the resultant colour in the SEVIRI dust imagery.


Sign in / Sign up

Export Citation Format

Share Document