Lg wave propagation and attenuation characteristics of the NW Himalaya

Author(s):  
Kaushik Kumar Pradhan ◽  
Supriyo Mitra

<p>Lg waves are formed by the superposition of shear waves trapped within the crustal waveguide and are the most destructive at regional distances. Excitation of Lg waves, its propagation and lateral variability determine the intensity of ground shaking from regional earthquakes. Spatial decay of spectral amplitude of Lg waves have been used to quantify the attenuation characteristics of the crust. In this study we use regional waveform data from the Jammu and Kashmir Seismological NETwork (JAKSNET) to study Lg wave propagation across the Indian Peninsula, Himalaya, Tibetan Plateau and Hindu Kush regions. We compute Lg/Sn wave ratio to distinguish regions with efficient Lg propagation from those with Lg blockage. These results are categorised using earthquake magnitude and depth to study Lg wave excitation and propagation across these varying geological terrains. We further use the two-station method to study Lg wave quality factor and its frequency dependence for the NW Himalaya. Seismograms recorded at two stations of the network, which are aligned within 15 degrees of the event, are used for analysis. The spectral ratio of Lg wave amplitude recorded at the two stations will be used to estimate the Q (quality factor) as a function of frequency. This will provide Q<sub>0</sub> along all inter-station paths, which will then be combined to form Q<sub>0</sub> tomography maps for the region. Checkerboard tests will be performed to estimate the resolution of the tomographic maps and accordingly the results will be interpreted.</p>

2020 ◽  
Vol 91 (4) ◽  
pp. 2127-2140 ◽  
Author(s):  
Glenn Thompson ◽  
John A. Power ◽  
Jochen Braunmiller ◽  
Andrew B. Lockhart ◽  
Lloyd Lynch ◽  
...  

Abstract An eruption of the Soufrière Hills Volcano (SHV) on the eastern Caribbean island of Montserrat began on 18 July 1995 and continued until February 2010. Within nine days of the eruption onset, an existing four-station analog seismic network (ASN) was expanded to 10 sites. Telemetered data from this network were recorded, processed, and archived locally using a system developed by scientists from the U.S. Geological Survey (USGS) Volcano Disaster Assistance Program (VDAP). In October 1996, a digital seismic network (DSN) was deployed with the ability to capture larger amplitude signals across a broader frequency range. These two networks operated in parallel until December 2004, with separate telemetry and acquisition systems (analysis systems were merged in March 2001). Although the DSN provided better quality data for research, the ASN featured superior real-time monitoring tools and captured valuable data including the only seismic data from the first 15 months of the eruption. These successes of the ASN have been rather overlooked. This article documents the evolution of the ASN, the VDAP system, the original data captured, and the recovery and conversion of more than 230,000 seismic events from legacy SUDS, Hypo71, and Seislog formats into Seisan database with waveform data in miniSEED format. No digital catalog existed for these events, but students at the University of South Florida have classified two-thirds of the 40,000 events that were captured between July 1995 and October 1996. Locations and magnitudes were recovered for ∼10,000 of these events. Real-time seismic amplitude measurement, seismic spectral amplitude measurement, and tiltmeter data were also captured. The result is that the ASN seismic dataset is now more discoverable, accessible, and reusable, in accordance with FAIR data principles. These efforts could catalyze new research on the 1995–2010 SHV eruption. Furthermore, many observatories have data in these same legacy data formats and might benefit from procedures and codes documented here.


2014 ◽  
Vol 1 (1) ◽  
pp. 10 ◽  
Author(s):  
Takashi Furumura ◽  
Tae-Kyung Hong ◽  
Brian LN Kennett
Keyword(s):  

1995 ◽  
Vol 85 (5) ◽  
pp. 1359-1372
Author(s):  
Hsi-Ping Liu

Abstract Because of its simple form, a bandlimited, four-parameter anelastic model that yields nearly constant midband Q for low-loss materials is often used for calculating synthetic seismograms. The four parameters used in the literature to characterize anelastic behavior are τ1, τ2, Qm, and MR in the relaxation-function approach (s1 = 1/τ1 and s2 = 1/τ2 are angular frequencies defining the bandwidth, MR is the relaxed modulus, and Qm is approximately the midband quality factor when Qm ≫ 1); or τ1, τ2, Qm, and MR in the creep-function approach (s1 = 1/τ1 and s2 = 1/τ2 are angular frequencies defining the bandwidth, and Qm is approximately the midband quality factor when Qm ≫ 1). In practice, it is often the case that, for a particular medium, the quality factor Q(ω0) and phase velocity c(ω0) at an angular frequency ω0 (s1 < ω0 < s2; s1 < ω0 < s2) are known from field measurements. If values are assigned to τ1 and τ2 (τ2 < τ1), or to τ1 and τ2 (τ2 < τ1), then the two remaining parameters, Qm and MR, or Qm and MR, can be obtained from Q(ω0). However, for highly attenuative media, e.g., Q(ω0) ≦ 5, Q(ω) can become highly skewed and negative at low frequencies (for the relaxation-function approach) or at high frequencies (for the creep-function approach) if this procedure is followed. A negative Q(ω) is unacceptable because it implies an increase in energy for waves propagating in a homogeneous and attenuative medium. This article shows that given (τ1, τ2, ω0) or (τ1, τ2, ω0), a lower limit of Q(ω0) exists for a bandlimited, four-parameter anelastic model. In the relaxation-function approach, the minimum permissible Q(ω0) is given by ln [(1 + ω20τ21)/(1 + ω20τ22)]/{2 arctan [ω0(τ1 − τ2)/(1 + ω20τ1τ2)]}. In the creep-function approach, the minimum permissible Q(ω0) is given by {2 ln (τ1/τ2) − ln [(1 + ω20τ21)/(1 + ω20τ22)]}/{2 arctan [ω0(τ1 − τ2)/(1 + ω20τ1τ2)]}. The more general statement that, for a given set of relaxation mechanisms, a lower limit exists for Q(ω0) is also shown to hold. Because a nearly constant midband Q cannot be achieved for highly attenuative media using a four-parameter anelastic model, a bandlimited, six-parameter anelastic model that yields a nearly constant midband Q for such media is devised; an expression for the minimum permissible Q(ω0) is given. Six-parameter anelastic models with quality factors Q ∼ 5 and Q ∼ 16, constant to 6% over the frequency range 0.5 to 200 Hz, illustrate this result. In conformity with field observations that Q(ω) for near-surface earth materials is approximately constant over a wide frequency range, the bandlimited, six-parameter anelastic models are suitable for modeling wave propagation in highly attenuative media for bandlimited time functions in engineering and exploration seismology.


1993 ◽  
Vol 83 (5) ◽  
pp. 1595-1609 ◽  
Author(s):  
Hiroaki Yamanaka ◽  
Marijan Dravinski ◽  
Hiroshi Kagami

Abstract Continuous measurement of microtremors at two sites on basement rock and sediments was carried out in Los Angeles, California, in order to understand the fundamental characteristics of microtremors. A predominant peak with a period of about 6.5 sec was found in the microtremor spectra in both media. The spectral amplitude of the peaks varied gradually with time in a similar manner at the two sites. Their time-variant characteristics are in agreement with change in oceanic swell height observed at an oceanic buoy in the southwest of Los Angeles. This suggests that they originate from an oceanic disturbance. On the other hand, a clear daily variation of spectral amplitudes at a period of 0.3 sec indicates that short-period microtremors are caused by cultural noises. It was found that the spectral ratio of long-period microtremors between the basement and the sediments was repeatable, although the spectral amplitudes at the two sites were time-variant. The spectral ratio of the long-period microtremors was similar to that derived from strong motion records. This suggests the applicability of spectral ratios of microtremors to assess the effects of deep sediments on long-period earthquake ground motion.


1971 ◽  
Vol 38 (2) ◽  
pp. 448-454 ◽  
Author(s):  
M. Stern ◽  
A. Bedford ◽  
C. H. Yew

For a simplified model of a laminated medium consisting of alternating layers of elastic and viscoelastic materials, the dispersion and attenuation characteristics for “plane,” longitudinal waves propagating in the direction of the layering are obtained. The dispersion and attenuation curves depend on a structure parameter involving the thickness of the layers and can deviate significantly from corresponding results for a continuum “effective-modulus” model. Curves are presented for a specific case with representative material parameters showing the effect of structure and of variations in the parameters of the composite.


Author(s):  
M. Ruzzene ◽  
A. Baz

Abstract Periodically placed actuators are used to control the wave propagation and to localize the vibration and sound radiation of fluid-loaded shells. The filtering capabilities of the resulting periodic structure can be actively tuned by modifying the feedback control gain of the actuators thus allowing for controlling the spectral width and location of the stop and pass bands as well as introducing controlled aperiodicity in the structure. A finite element model is developed to study the fundamental phenomena governing the coupling between the shell, actuators and the fluid domain surrounding the shell. The geometry of the shell and the fluid domain allows for the formulation of a harmonic-based model with uncoupled circumferential modes. The model is used to predict the pass and stop frequency bands for different proportional control gains and to evaluate the shell harmonic response and the sound radiation into the surrounding fluid. The obtained results indicate that the location and width of the stop bands as well as the attenuation characteristics of the shell can be modified by proper choice of the proportional control gain. Numerical simulations also demonstrate that the location of the stop bands can be identified from the frequency response function of the shell and from the sound intensity. The tunable characteristics of the proposed active shells allow for the introduction of controlled aperiodicty through proper adjustments of the actuators’ feedback gains. Disorder in periodic structures typically extends the stopbands into adjacent propagation zones and, more importantly, localizes the vibration energy near the excitation source. Both structural response and sound radiation are evaluated for increasing levels of aperiodicity. The results presented demonstrate the effectiveness of the proposed concept as an effective means for controlling the attenuation characteristics of fluid-loaded shells and for confining both vibration and sound radiation near the excitation source. Also, the presented analysis provides an invaluable means for designing fluid-loaded shells, which are quiet over desired frequency bands and where the energy can be spatially confined in well-defined restricted areas.


2020 ◽  
Vol 91 (3) ◽  
pp. 1763-1775 ◽  
Author(s):  
Monica D. Kohler ◽  
Deborah E. Smith ◽  
Jennifer Andrews ◽  
Angela I. Chung ◽  
Renate Hartog ◽  
...  

Abstract The ShakeAlert earthquake early warning system is designed to automatically identify and characterize the initiation and rupture evolution of large earthquakes, estimate the intensity of ground shaking that will result, and deliver alerts to people and systems that may experience shaking, prior to the occurrence of shaking at their location. It is configured to issue alerts to locations within the West Coast of the United States. In 2018, ShakeAlert 2.0 went live in a regional public test in the first phase of a general public rollout. The ShakeAlert system is now providing alerts to more than 60 institutional partners in the three states of the western United States where most of the nation’s earthquake risk is concentrated: California, Oregon, and Washington. The ShakeAlert 2.0 product for public alerting is a message containing a polygon enclosing a region predicted to experience modified Mercalli intensity (MMI) threshold levels that depend on the delivery method. Wireless Emergency Alerts are delivered for M 5+ earthquakes with expected shaking of MMI≥IV. For cell phone apps, the thresholds are M 4.5+ and MMI≥III. A polygon format alert is the easiest description for selective rebroadcasting mechanisms (e.g., cell towers) and is a requirement for some mass notification systems such as the Federal Emergency Management Agency’s Integrated Public Alert and Warning System. ShakeAlert 2.0 was tested using historic waveform data consisting of 60 M 3.5+ and 25 M 5.0+ earthquakes, in addition to other anomalous waveforms such as calibration signals. For the historic event test, the average M 5+ false alert and missed event rates for ShakeAlert 2.0 are 8% and 16%. The M 3.5+ false alert and missed event rates are 10% and 36.7%. Real-time performance metrics are also presented to assess how the system behaves in regions that are well-instrumented, sparsely instrumented, and for offshore earthquakes.


Sign in / Sign up

Export Citation Format

Share Document