Manifestation of the Pacific Decadal Oscillation in the stationary planetary waves activity

Author(s):  
Daria Sobaeva ◽  
Yulia Zyulyaeva ◽  
Sergey Gulev

<p>Strong quasi-decadal oscillations of the stratospheric polar vortex (SPV) intensity are in phase with the Pacific decadal oscillation (PDO). A stronger SPV is observed during the positive phase of the PDO, and during the negative phase, the intensity of the SPV is below the mean climate values. The SPV intensity anomalies, formed by the planetary waves and zonal mean flow interaction, lead to the weakening/intensification of the vortex.</p><p>This research aimed to obtain the differences in the characteristics and the spatial propagation pattern of the planetary waves in the middle troposphere and lower stratosphere during different PDO phases. We analyzed composite periods of years when the PDO index has extremely high and low values. Two periods were constructed for both positive and negative phases, the first consisting of years with El-Nino/La-Nina events and the second without prominent sea surface temperature anomalies in the tropics. </p><p>During the wintertime in the Northern Hemisphere (December-February), wave 2 with two ridges (Siberian and North American Highs) and two troughs (Icelandic and Aleutian Lows) dominates in the middle troposphere, along with wave 1 dominating in the lower stratosphere. In the middle troposphere, at the positive phase ​​of the PDO, the amplitude of wave 2 is higher than in years with negative values of the PDO index. The differences in the Aleutian Low and the North American High intensity between the two phases are significant at the 97.5% level. In the lower stratosphere, the wave amplitude is lower at the negative phase ​​of the PDO, but we can also talk about a slight shift of the wave phase to the east. The regions of the heavy rains in the tropics during El-Nino events are the planetary waves source. They propagate from low to high latitudes, which results in modifying the characteristics and locations of the intensification of the stationary planetary waves in mid-latitudes.</p>

2016 ◽  
Vol 29 (3) ◽  
pp. 1031-1049 ◽  
Author(s):  
A. C. Kren ◽  
D. R. Marsh ◽  
A. K. Smith ◽  
P. Pilewskie

Abstract The response of the Northern Hemisphere winter stratosphere to the Pacific decadal oscillation (PDO) is examined using the Whole Atmosphere Community Climate Model. A 200-yr preindustrial control simulation that includes fully interactive chemistry, ocean and sea ice, constant solar forcing, and greenhouse gases fixed to 1850 levels is analyzed. Based on principal component analysis, the PDO spatial pattern, frequency, and amplitude agree well with the observed PDO over the period 1900–2014. Consistent with previous studies, the positive phase of the PDO is marked by a strengthened Aleutian low and a wave train of geopotential height anomalies reminiscent of the Pacific–North American pattern in the troposphere. In addition to a tropospheric signal, a zonal-mean warming of about 2 K in the northern polar stratosphere and a zonal-mean zonal wind decrease of about 4 m s−1 in the PDO positive phase are found. When compositing PDO positive or negative winters during neutral El Niño years, the magnitude is reduced and depicts an early winter forcing of the stratosphere compared to a late winter response from El Niño. Contamination between PDO and ENSO signals is also discussed. Stratospheric sudden warmings occur 63% of the time in the PDO positive phase compared to 40% in the negative phase. Although this sudden warming frequency is not statistically significant, it is quantitatively consistent with NCEP–NCAR reanalysis data and recent observational evidence linking the PDO positive phase to weak stratospheric vortex events.


2020 ◽  
Vol 148 (5) ◽  
pp. 1861-1875
Author(s):  
Andrew W. Robertson ◽  
Nicolas Vigaud ◽  
Jing Yuan ◽  
Michael K. Tippett

Abstract Large-scale atmospheric circulation regime structures are used to diagnose subseasonal forecasts of wintertime geopotential height fields over the North American sector, from the NCEP CFSv2 model. Four large-scale daily circulation regimes derived from reanalysis 500-hPa geopotential height data using K-means clustering are used as a low-dimensional basis for diagnosing the model’s forecasts up to 45 days ahead. On average, hindcast skill in regime space is found to be limited to 10–15 days ahead, in terms of anomaly correlation of 5-day averages of regime counts, over the 1999–2010 period. However, skill up to 30 days ahead is identified in individual winters, and intraseasonal episodes of high skill are identified using a forecast-evolution graphical tool. A striking vacillation between the West Coast and Pacific ridge patterns during December–January 2008/09 is shown to be predicted 20–25 days in advance, illustrating the possibility to identify “forecasts of opportunity” when subseasonal forecast skill is much higher than the average. The forecast-evolution tool also provides insight into the poor seasonal forecasts of California precipitation by operational centers during the 2015/16 El Niño winter. The Pacific trough regime is shown to be greatly overpredicted beyond 1–2 weeks in advance during the 2015/16 winter, with weather-scale features dominating the forecast evolution at shorter lead times. A similar though less extreme situation took place during the weaker El Niño of 2009/10, with the Pacific trough overforecast at S2S lead times.


2005 ◽  
Vol 35 (3) ◽  
pp. 323-335 ◽  
Author(s):  
Christopher S. Meinen

Abstract Altimetric observations of sea surface height anomaly (SSHA) from the TOPEX/Poseidon and ERS satellites, hydrography, and the ECMWF and Florida State University wind products are used to track warm water (≥20°C) as it is exchanged between the equatorial Pacific Ocean and the higher latitudes during 1993–2003. The large El Niño event of 1997–98 resulted in a significant discharge of warm water toward the higher latitudes within the interior of the Pacific Ocean. The exchange of anomalous warm water volume with the Northern Hemisphere appears to be blocked under the intertropical convergence zone, consistent with most current ideas on the time-mean tropical–subtropical exchange. Little of the warm water discharged northward across 5° and 8°N during the 1997–98 El Niño event could be traced as far as 10°N. To the south, however, these anomalous volumes of warm water were visible at least as far as 20°S, primarily in the longitudes around 130°–160°W. In both hemispheres most of the warm water appeared to flow westward before returning to the Tropics during the recharge phase of the El Niño–La Niña cycle. The buildup of warm water in the Tropics before the 1997–98 El Niño is shown to be fed primarily by warm water drawn from the region in the western Pacific within 5°S–15°N. The exchange cycle between the equatorial band and the higher latitudes north of the equator leads the cycle in the south by 6–8 months. These results are found in all three datasets used herein, hydrography, altimetric observations of SSHA, and Sverdrup transports calculated from multiple wind products, which demonstrates the robustness of the results.


2011 ◽  
Vol 4 (4) ◽  
pp. 665 ◽  
Author(s):  
Djane Fonseca Da Silva ◽  
Josicleda Domiciano Galvíncio

 Pretende-se nesse trabalho investigar como a ODP exerce influência sobre a variabilidade pluviométrica da sub-bacia hidrográfica do Baixo São Francisco, situada na região Nordeste do Brasil. Foram utilizados dados de precipitação de 17 localidades para o período de dados de 1911-1993 obtidos através da Agência Nacional das Águas (ANA) pelo site www.ana.gov.br/hidroweb. O pico dominante para a variabilidade temporal do BSF é da escala de 20,2-22 anos e pico secundário, significativo, ocorre na escala de 11 anos. Durante a ocorrência simultânea de ENOS e ODP negativa, as anomalias positivas aumentaram consideravelmente. O que parece é que a ODP negativa incrementa os valores das anomalias de chuva, tanto durante El Niño, quanto La Niña.Palavras-chave: Oscilação Decadal do Pacífico, Baixo São Francisco, Análise de Ondeletas  Study of the Influence of the Pacific Decadal Oscillation in the Northeast of Brazil  ABSTRACT It is intended this work to investigate how the PDO influence on rainfall variability in the sub-basin of the Lower São Francisco, located in northeastern Brazil. We used precipitation data from 17 sites for the period 1911-1993 data obtained through the National Water Agency (ANA) by the site www.ana.gov.br / hidroweb. The dominant peak for the temporal variability of BSF is the range of 20.2 to 22 years and secondary peak, significantly, occurs in the range of 11 years. During the simultaneous occurrence of ENSO and PDO negative, the positive anomalies have increased considerably. It turns out that the PDO increases the negative values of abnormal rainfall, both during El Niño, and La Niña. Keywords: Pacific Decadal Oscillation, Low São Francisco, Wavelet Analysis


Sign in / Sign up

Export Citation Format

Share Document