scholarly journals Effect of unsteady flows on the development and magnitude of bed forms

Author(s):  
Le Wang ◽  
Alan Cuthbertson ◽  
Gareth Pender ◽  
Zhixian Cao

<p>Sediment transport and associated morphological changes in alluvial rivers occur primarily under unsteady flow conditions that are manifested as well-defined flood hydrograph events. At present, typical bed forms generated by such unsteady flows is far less studied and, thus, more poorly understood, than equivalent bed forms generated under steady flow conditions. In view of this, the objective of this work is to investigate the development of morphological bed features, and specifically variability in the length, height and steepness of bed forms that develop in a mobile coarse-sand bed layer under unsteady flow hydrographs under zero sediment feed conditions. A series of laboratory flume experiments is conducted within which different flow hydrograph events are simulated physically by controlling their shape, unsteadiness and magnitude. Experimental results indicate that different categories of bed forms such as dunes, alternate bars or transitional dune-bar structures develop within the erodible bed layer when subject to varying hydrograph flow conditions. Examination of relative importance of three parameters used to describe the hydrograph characteristics (i.e. asymmetry, unsteadiness and total water work) on bed form dimensional descriptors (i.e. wavelength, height and steepness) reveals that hydrograph unsteadiness and total water work are the primary and second-order controls on bed deformations or corresponding bed form dimensions. By contrast, hydrograph asymmetry appears to have minimal or negligible influence on bed form development in terms of their type and magnitude. Based on these findings, a physical model was developed and tested to describe the effect of unsteady flow hydrographs with varying unsteadiness and total water work on the nature and size of resulting bed forms that are generated in sand-bed layers. </p>

1978 ◽  
Vol 1 (16) ◽  
pp. 109
Author(s):  
Horst Nasner

Many publications based on theoretical considerations or model tests, give utterance to the demand that there should be unequivocal relations between hydraulic conditions and bed form characteristics which should be generally applicable. These relationships determined for steady conditions and limited water depths should be handled with care when being applied to natural rivers. The bed configurations do not immediately fit themselves to the varying flow conditions. The bed forms need a certain reconstruction time in case of a changing discharge. The time-lag of dunes was observed on numerous rivers, in the past. A general review of investigations made in this field is given by ALLEN (1976 b). In the following contribution, an attempt is made to describe the magnitude of the time lag of bed forms for unsteady flow conditions.


1993 ◽  
Vol 115 (1) ◽  
pp. 101-109 ◽  
Author(s):  
L. He ◽  
J. D. Denton

A quasi-three-dimensional inviscid-viscous coupled approached has been developed for unsteady flows around oscillating blades, as described in Part 1. To validate this method, calculations for several steady and unsteady flow cases with strong inviscid-viscous interactions are performed, and the results are compared with the corresponding experiments. Calculated results for unsteady flows around a biconvex cascade and a fan tip section highlight the necessity of including viscous effects in predictions of turbomachinery blade flutter at transonic flow conditions.


Author(s):  
L. He ◽  
J. D. Denton

A quasi 3-D inviscid-viscous coupled approach has been developed for unsteady flows around oscillating blades, as described in Part 1. To validate this method, calculations for several steady and unsteady flow cases with strong inviscid-viscous interactions are performed, and the results are compared with the corresponding experiments. Calculated results for unsteady flows around a bi-convex cascade and a fan tip section highlight the necessity of including viscous effects in predictions of turbomachinery blade flutter at transonic flow conditions.


Author(s):  
Ali H. Alhadidi ◽  
Mohammed F. Daqaq ◽  
Hamid Abderrahmane

This paper investigates exploiting a bi-stable restoring force to enhance the transduction of wake-galloping energy harvesters in unsteady flows. To that end, a harvester consisting of a piezoelectric cantilever beam augmented with a square-sectioned bluff body at the free end is considered. Two repulsive magnets located at the tip of the beam are used to introduce the bi-stable restoring force. Unsteadiness is generated in a wind tunnel using static-grid structures located in the upstream of the bluff body. Three different mesh screens with square bars are designed with different bar and mesh widths to control the Reynolds numbers and associated unsteadiness. A series of wind tunnel tests are then used to experimentally investigate the response of the harvester with and without the tip magnets. Results demonstrate that the bi-stable restoring force can be used to improve the output power of the harvester under unsteady flow conditions.


2014 ◽  
Vol 39 ◽  
pp. 115-121 ◽  
Author(s):  
J. J. Warmink

Abstract. Accurate forecasts of bed forms and their roughness during a flood wave are essential for flood management. Bed forms remain dynamic even under steady discharge and are subject to a continuous process of creations and destructions of individual bed forms. Dune evolution during the rising limb of a flood wave is quite well understood and can be modeled. However, dune evolution during the falling limb remains poorly understood. The objective of this paper is to explain the bed form evolution and roughness during the receding limb of fast flood waves. Therefore, bed profiles of two flume experiments were analyzed in detail and individual dune creations and destructions were classified. The results showed that for fast flood waves in subcritical water flow: (1) dune length grows during both rising and falling limb due to amalgamation of bed forms, (2) dune length has a longer adaptation time than dune height, resulting in short, high dunes during the peak discharge, and (3) this hysteresis difference between dune height and length results in a larger roughness than predicted by equilibrium bed form dimension equations, which may result in a larger roughness of the main channel during floods than expected.


Geology ◽  
2020 ◽  
Vol 48 (12) ◽  
pp. 1144-1148
Author(s):  
Chenliang Wu ◽  
Jeffrey A. Nittrouer ◽  
Travis Swanson ◽  
Hongbo Ma ◽  
Eric Barefoot ◽  
...  

Abstract Dune-scale cross-beds are a fundamental building block of fluvial-deltaic stratigraphy and have been recognized on Earth and other terrestrial planets. The architecture of these stratal elements reflects bed-form dynamics that are dependent on river hydrodynamic conditions, and previous work has documented a multitude of scaling relationships to describe the morphodynamic interactions between dunes and fluid flow. However, these relationships are predicated on normal flow conditions for river systems and thus may be unsuitable for application in fluvial-deltaic settings that are impacted by nonuniform flow. The ways in which dune dimensions vary systematically due to the influence of reach-averaged, nonuniform flow, and how such changes may be encoded in dune cross-strata, have not been investigated. Herein, we explored the influence of backwater flow on dune geometry in a large modern fluvial channel and its implications for interpretation of systematic variability in dune cross-strata in outcrop-scale stratigraphy. This was accomplished by analyzing high-resolution channel-bed topography data for the lowermost 410 km of the Mississippi River, which revealed that dune size increases to a maximum before decreasing toward the river outlet. This spatial variability coincides with enhanced channel-bed aggradation and decreasing dune celerity, which arise due to backwater hydrodynamics. An analytical model of bed-form stratification, identifying spatial variability of cross-set thickness, indicates a prominent downstream decrease over the backwater region. These findings can be used to inform studies of ancient fluvial-deltaic settings, by bolstering assessments of proximity to the marine terminus and associated spatially varying paleohydraulics.


2014 ◽  
Vol 905 ◽  
pp. 369-373
Author(s):  
Choo Tai Ho ◽  
Yoon Hyeon Cheol ◽  
Yun Gwan Seon ◽  
Noh Hyun Suk ◽  
Bae Chang Yeon

The estimation of a river discharge by using a mean velocity equation is very convenient and rational. Nevertheless, a research on an equation calculating a mean velocity in a river was not entirely satisfactory after the development of Chezy and Mannings formulas which are uniform equations. In this paper, accordingly, the mean velocity in unsteady flow conditions which are shown loop form properties was estimated by using a new mean velocity formula derived from Chius 2-D velocity formula. The results showed that the proposed method was more accurate in estimating discharge, when compared with the conventional formulas.


Sign in / Sign up

Export Citation Format

Share Document