Rock strength and time dependent deformation of borehole breakouts in the ICDP Outokumpu deep borehole

Author(s):  
Simona Pierdominici ◽  
Maria Ask

<p>While the mechanical properties of plate boundaries are relatively well known and characterized by earthquake occurrence, intraplate regions are still largely <em>“terra incognita”</em>, especially in cratonic shields where only seldom and very few data related to the state of the stress field are available. The only way to detect such data and understand the geological and physical processes responsible for the present stress field in an intraplate area is to carry out in-situ measurements of stress-induced deformation in a borehole over time. We had a unique and extraordinary opportunity to measure and investigate the time-dependent deformation in an aseismic area directly in-situ inside the 2500 m Outokumpu open borehole in eastern Finland. The stress data acquired in 2006 and 2011 have been analysed and show that a slow but continued deformation of the upper part of the Earth‘s crust, albeit unexpected, is still ongoing. The continuous formation and development of stress-induced borehole enlargements in a tectonically very stable and almost aseismic area is unforeseen and raises questions of global importance. For this, two complementary approaches were conducted: identification of breakout zones and rock physics measurements on selected drill cores. We compared the two datasets to study the changes of breakout geometry and to quantify the growth of the breakouts in this time span from differences in width, length and depth. For the second method, UCS experiments were conducted providing unconfined compressive strength on specimens collected from above, middle and below breakout zones, and rough estimates of the static Young’s modulus based on the initial length and axial travel of the load frame. The sample height-diameter (H:D) ratio of available drill cores was less than required in testing standards (ASTM D7012, 2014, ISRM 1999). The relatively small grain size of drill cores allowed drilling of smaller-diameter subcores that in most cases fulfilled or exceeded the minimum H:D ratio (1.7<H:D<2.3). We realized that also along the same lithology some zones are affected by enlargements and other remain undamaged. Therefore, we performed the geomechanical analyses on specimens from the same lithology but not affected by failures. Fifty-one uniaxial compressive tests were conducted on specimens belonging to four main rock types at different depths: biotite gneiss, diopside tremolite skarn, micaschist and serpentinite. Results from geomechanical test show UCS values range from 27 to 245 MPa with an average of 102 MPa and a standard deviation of 42, while the elastic Youngs modulus range from 3 to 20 GPa with an average of 7.3 GPa and a standard deviation of 2.8. Most samples collected within breakout zones have UCS values from 40 to 170 MPa and H:D ratio from 1.8 to 2.0, less that required by the standards. The samples outside of the breakout zones show UCS values from 27 to 186 MPa, and H:D ratio from 1.7 to 2.3. The hypothesis for testing was that borehole breakouts were formed in weaker rocks. Our results does not confirm this hypothesis, but the observed time-dependent deformation in Outokumpu borehole is interesting and calls for further studies.</p>

1978 ◽  
Vol 15 (4) ◽  
pp. 537-547 ◽  
Author(s):  
K. Y. Lo ◽  
R. S. C. Wai ◽  
J. H. L. Palmer ◽  
R. M. Quigley

Two methods of laboratory measurements of time-dependent deformations of rocks due to the relief of in situ stresses are described. Experiments were performed on specimens taken from seven rock formations in southern Ontario. It was found that some rock types exhibit considerable time-dependent deformation, generally consistent with observed field behaviour. In addition, the swelling behaviour of the shaly rocks is anisotropic and constituent layers of the same rock formation may possess very different swelling characteristics. Mineralogical tests performed showed that the observed swelling behaviours are related to the composition and clay fabric of the rock.For detailed analysis of the test results, a rheological model was employed to represent the time-dependent deformation. Model parameters for three rock types have been obtained.Because the tests are simple and inexpensive to perform, it becomes practical to carry out a large number of tests for the evaluation of potential problems due to time-dependent deformation.


2004 ◽  
Vol 261-263 ◽  
pp. 1097-1102 ◽  
Author(s):  
Jian Liu ◽  
Xia Ting Feng ◽  
Xiu Li Ding ◽  
Huo Ming Zhou

The time-dependent behavior of rock mass, which is generally governed by joints and shearing zones, is of great significance for engineering design and prediction of long-term deformation and stability. In situ creep test is a more effective method than laboratory test in characterizing the creep behavior of rock mass with joint or shearing zone due to the complexity of field conditions. A series of in situ creep tests on granite with joint at the shiplock area of the Three-Gorges Project and basalt with shearing zone at the right abutment of the Xiluodu Project were performed in this study. Based on the test results, the stress-displacement-time responses of the joints and basalt are analyzed, and their time-dependent constitutive model and model coefficients are given, which is crucial for the design to prevent the creep deformations of rock masses from causing the failure of the operation of the shiplock gate at the Three-Gorges Project and long-term stability of the Xiluodu arc dam.


1982 ◽  
Vol 15 ◽  
Author(s):  
W. S. Fyfe

ABSTRACTSelection of the best rock types for radwaste disposal will depend on their having minimal permeability, maximal flow dispersion, minimal chance of forming new wide aperture fractures, maximal ion retention, and minimal thermal and mining disturbance. While no rock is perfect, thinly bedded complex sedimentary sequences may have good properties, either as repository rocks, or as cover to a repository.Long time prediction of such favorable properties of a rock at a given site may be best modelled from studies of in situ rock properties. Fracture flow, dispersion history, and geological stability can be derived from direct observations of rocks themselves, and can provide the parameters needed for convincing demonstration of repository security for appropriate times.


2021 ◽  
Vol 114 (1) ◽  
Author(s):  
Alba Zappone ◽  
Eduard Kissling

AbstractThe Swiss Atlas of Physical Properties of Rocks (SAPHYR) project aims at centralize, uniform, and digitize dispersed and often hardly accessible laboratory data on physical properties of rocks from Switzerland and surrounding regions. The goal of SAPHYR is to make the quality-controlled and homogenized data digitally accessible to an open public, including industrial, engineering, land and resource planning companies as well as governmental and academic institutions, or simply common people interested in rock physics. The physical properties, derived from pre-existing literature or newly measured, are density, porosity and permeability as well as seismic, magnetic, thermal and electrical properties. The data were collected on samples either from outcrops or from tunnels and boreholes. At present, data from literature have been collected extensively for density, porosity, seismic and thermal properties. In the past years, effort has been placed especially on collecting samples and measuring the physical properties of rock types that were poorly documented in literature. A workflow for quality control on reliability and completeness of the data was established. We made the attempt to quantify the variability and the uncertainty of the data. The database has been recently transferred to the Federal Office of Topography swisstopo with the aim to develop the necessary tools to query the database and open it to the public. Laboratory measurements are continuously collected, therefore the database is ongoing and in continuous development. The spatial distribution of the physical properties can be visualized as maps using simple GIS tools. Here the distribution of bulk density and velocity at room conditions are presented as examples of data representation; the methodology to produce these maps is described in detail. Moreover we also present an exemplification of the use of specific datasets, for which pressure and temperatures derivatives are available, to develop crustal models.


2022 ◽  
Author(s):  
Omar Alfarisi ◽  
Djamel Ouzzane ◽  
Mohamed Sassi ◽  
TieJun Zhang

<p><a></a>Each grid block in a 3D geological model requires a rock type that represents all physical and chemical properties of that block. The properties that classify rock types are lithology, permeability, and capillary pressure. Scientists and engineers determined these properties using conventional laboratory measurements, which embedded destructive methods to the sample or altered some of its properties (i.e., wettability, permeability, and porosity) because the measurements process includes sample crushing, fluid flow, or fluid saturation. Lately, Digital Rock Physics (DRT) has emerged to quantify these properties from micro-Computerized Tomography (uCT) and Magnetic Resonance Imaging (MRI) images. However, the literature did not attempt rock typing in a wholly digital context. We propose performing Digital Rock Typing (DRT) by: (1) integrating the latest DRP advances in a novel process that honors digital rock properties determination, while; (2) digitalizing the latest rock typing approaches in carbonate, and (3) introducing a novel carbonate rock typing process that utilizes computer vision capabilities to provide more insight about the heterogeneous carbonate rock texture.<br></p>


Sign in / Sign up

Export Citation Format

Share Document