Modelling plant uptake of Cd, Ni and Pb from mobile fractions and release rates obtained by the EUF-method

Author(s):  
Manfred Sager ◽  
Anto Jelecevic ◽  
Peter Liebhard

<p>In order to predict concentrations in green plants from kinetic data as well as from mobile soil fractions from geogenically enriched areas, soils from historic mining and smelting sites in Styria (Austria) were used to grow lettuce in pot experiments. Lettuce is known for high accumulation of Ni and Cd in the shoots as well, but in our case, uptakes remained low. Addition of a mixed metal salt solution resulted in high Ni concentrations in the plants, contrary to Cd and Pb. Effects of mineral fertilizers and metal salt additions upon plant metal uptake and N resp C/N shifts were monitored and combined with results from batch-extraction as well as with release rates and released amounts obtained by a modified EUF (electro-ultra-filtration) method.</p><p>The release obtained by EUF in 0,002M DTPA was modelled by linear, logarithmic, parabolic (√) and quadratic dependence versus time, from original as well as from cumulated datasets. As expected, addition of soluble salts increased the release, whereas addition of PK fertilizer lowered the release of the metals from soil. Thus, food contamination hazards can be lowered by adequate agricultural activities. Plant uptake by nickel got clearly enhanced by metal salt additions, whereas effects of added cadmium and lead were lower. Correlations between plant uptake and release rates resp. released amounts were in the same range, whatever model was used.</p>

2020 ◽  
Vol 28 (2) ◽  
pp. 2097-2107
Author(s):  
Matthias Gassmann ◽  
Eva Weidemann ◽  
Thorsten Stahl

AbstractPer- and polyfluoroalkyl substances (PFASs) are used in industrial production and manufacturing but were repeatedly detected in agricultural soils and therefore in cash crops in recent years. Dissipation of perfluoroalkyl acids (PFAAs), a sub-group of PFASs, in the environment was rather attributed to the formation of non-extractable residues (NER) than to degradation or transformation. Currently, there are no models describing the fate of PFAAs in the soil-plant continuum under field conditions, which hampers an assessment of potential groundwater and food contamination. Therefore, we tested the ability of the pesticide-leaching model MACRO to simulate the leaching and plant uptake of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in a field lysimeter using two concepts of adsorption: a kinetic two-side sorption concept usually applied for pesticide leaching (scenario I) and the formation of NER (scenario II). The breakthrough of substances could be simulated adequately in scenario II only. Scenario I, however, was not able to reproduce sampled leaching concentrations. Plant uptake was simulated well in the first year after contamination but lacked adequacy in the following years. The model results suggest that more than 90% of PFOA and PFOS are in the pool of NER after 8 years, which is more compared with other studies. However, since NER formation was hypothesized to be a kinetic process and our study used a PFASs leaching time series over a period of 8 years, the results are reasonable. Further research is required on the formation of NER and the uptake of PFAAs into plants in order to gain a better model performance and extend the simulation approach to other PFAAs.


2018 ◽  
Vol 16 (1) ◽  
pp. 258-271 ◽  
Author(s):  
Katarzyna Przygocka-Cyna ◽  
Witold Grzebisz

AbstractThe agricultural usability of biogas digestate solids (BDS) as a soil amendment depends upon its impact on soil fertility and the content of minerals in the edible part of the grown crop. This hypothesis was verified in a series of field experiments with maize conducted between 2014 and 2016 at Brody, Poland. The two-factorial experiment consisted of the DBS application method (broadcast and row) and its rate: 0, 0.8, 1.6, 3.2 t ha–1. The post-harvest analysis of soil fertility showed that BDS can, at least partly, replace mineral fertilizers. The supply of N-NO3 to maize as a growth driving factor was significantly limited by a shortage of iron, potassium and, to some extent, magnesium. As recorded in 2016, the shortage of available Fe resulted in a low/pool of N-NO3, thus significantly decreasing the yield of grain. The shortage of K supply to grain created a pathway for the accumulation of other elements, including heavy metals. The disadvantage of the N-NO3 pool increase, due to the DBS application, was concomitant with the enhanced intake of cadmium and lead, which consequently exceeded their permissible concentration limits in grain. These unfavorable results of biogas digestate impact on the quality of maize grain can be ameliorated by incorporating zinc into the biogas type of soil amendment and keeping a sufficiently high level of available potassium and iron. The shortage of K can be partly overcome by a better sodium supply, however, its accumulation in grain results in an enhanced accumulation of cadmium and lead.


2009 ◽  
Vol 8 (2) ◽  
pp. 42 ◽  
Author(s):  
W. Q. Lamas ◽  
R. S. Fujisawa

This work aims to test biodegradable chemicals into treatment of textile waste water from an auto parts facility with goal of reuse of water treated in dyeing process of lace used in safety belts. It presents a method that suits the treatment of waste water with local environmental regulations and allows the reuse of water through the adoption of actions that replace the conventional physical-chemical treatment by biodegradable products, which naturally extend the possibility of reuse beyond the process and increase the quality of water for reuse in that one, allowing satisfy the requirements of product quality demanded by the market. This work proposes substitution of some chemicals by biodegradable products and comparison to previous results obtained with current treatment for the same conditions preestablished. Also the ultra-filtration method had evaluated and its results were compared to traditional process and to new proposal. According to results obtained, replacement of traditional chemicals by biodegradable products is technical and economical viable and attends to the waste water reuse policy proposed.


2014 ◽  
Vol 1705 ◽  
Author(s):  
Neerish Revaprasadu

ABSTRACTThe synthesis of hexadecylamine capped (HDA) CdTe and PbTe via a simple hybrid solution based high temperature route is described. In this method the tellurium is first reduced to form the telluride salt followed by reaction with the metal salt and finally thermolysis in a coordinating solvent. The metal salt and reaction temperature played an important role in the morphology and growth mechanism of the particles. The CdTe particles where in the form of rods and spheres whereas the PbTe nanoparticles were in the form of nanowires. The oriented attachment mechanism is proposed for the growth of elongated particles under certain reaction conditions.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 85
Author(s):  
Manfred Sager

In this study, soil dissolution kinetics were evaluated to predict the metal uptake of lettuce plants under varying conditions of fertilisation and metal pollution. Velocities and time dependencies of soil dissolution obtained by electro-ultrafiltration (EUF), which prevents back reaction, were modelled in three ways, obtained from suspensions in 0.002 M DTPA at determined soil pH levels, for cases in which sampling versus time led to decreasing concentrations. The models yielded a maximum achievable concentration, a timespan needed for it to be reached, a slope, and an intercept of the respective fitted curves. Three geogenically metalliferous soil samples and one ambient soil sample, both as originals, fertilised with PK or soaked with a Cd-Ni-Pb solution, were used as solid samples. The resulting kinetic parameters were correlated with the amounts absorbed by lettuce plants grown with these substrates in pot experiments, which yielded fairly good correlations with Zn, but also with Li and Sr, as well as Ni and Pb, mainly because of differences due to the addition of a metallic salt solution. Plant growth was hardly influenced by the additions.


Author(s):  
T. J. Beveridge

The Bacillus subtilis cell wall provides a protective sacculus about the vital constituents of the bacterium and consists of a collection of anionic hetero- and homopolymers which are mainly polysaccharidic. We recently demonstrated that unfixed walls were able to trap and retain substantial amounts of metal when suspended in aqueous metal salt solutions. These walls were briefly mixed with low concentration metal solutions (5mM for 10 min at 22°C), were well washed with deionized distilled water, and the quantity of metal uptake (atomic absorption and X-ray fluorescence), the type of staining response (electron scattering profile of thin-sections), and the crystallinity of the deposition product (X-ray diffraction of embedded specimens) determined.Since most biological material possesses little electron scattering ability electron microscopists have been forced to depend on heavy metal impregnation of the specimen before obtaining thin-section data. Our experience with these walls suggested that they may provide a suitable model system with which to study the sites of reaction for this metal deposition.


2020 ◽  
Author(s):  
Arindam Malakar ◽  
Michael Kaiser ◽  
Daniel D. Snow ◽  
Harkamal Walia ◽  
Chittaranjan Ray

1979 ◽  
Author(s):  
M Drummond ◽  
G Lowe ◽  
J Belch ◽  
C Forbes ◽  
J Barbenel

We investigated the reproducibility and validity of a simple method of measuring red cell deformability (filtration of whole blood through 5 µ sieves) and its relationship to haematocrit, blood viscosity, fibrinogen, white cell count, sex and smoking. The mean coefficient of variation in normals was 3. 7%. Tanned red cells showed marked loss of deformability. Blood filtration rate correlated with haematocrit (r = 0. 99 on dilution of samples, r = 0. 7 in 120 normals and patients). After correction for haematocrit, deformability correlated with high shear viscosity, but not low shear viscosity, fibrinogen or white cell count. In 60 normals there was no significant difference between males and females, or smokers and non-smokers, but in 11 smokers there was an acute fall in deformability after smoking 3 cigarettes (p<0. 05). Reduced deformability was found in acute myocardial infarction (n = 15, p<0. 01) and chronic peripheral arterial disease (n = 15, p<0. 01). The technique is reproducible, detects rigid cells and appears useful in the study of vascular disease.


2020 ◽  
pp. 181-191
Author(s):  
M. Tkachenko ◽  
N. Borys ◽  
Ye. Kovalenko

The research aims to establish the eff ectiveness of granular chalk use produced by «Slavuta-Calcium» Ltd. under growing Poliska–90 winter wheat variety, changing the physicochemical properties of grey forest soil and the wheat productivity. It also aims to establish optimal dosis of «Slavuta-Calcium» granular chalk as the meliorant and mineral fertilizer for grey forest soil in the system of winter wheat fertilization. In the temporary fi eld studies, various doses of nutrients N60–90–120P30–45–60K60–90–120 combined with «Slavuta–Calcium» granular chalk in a dose of Ca230–460–690 kg/ha of the active substance were studied against the background of secondary plowing of rotation products – soybean biomass that averaged 2.34 t/ha. Granular chalk is a modern complex highly eff ective meliorant with the content of Ca – 37.7 and Mg – 0.2 %, the mass fraction of carbonates (CaCO3 + MgCO3) makes at least 95 %. It is characterized by a high level of solubility when interacting with moisture in soil. It has a form of white granules, the mass fraction of 4.0–6.0 mm in size granules makes not less than 90 % and the one of 1.0 mm in size makes less than 5 %. Reactivity – 97 %. The granular chalk is advisable to apply on acidic soils, as a highly concentrated calcium-magnesium fertilizer, with the former as the dominant fertilizer, to optimize the physicochemical properties of the soil, as well as the plant nutrition system, in particular, increasing the availability of an element for assimilation by plants and as long-term ameliorants. The eff ectiveness of the use of mineral fertilizers, in particular acidic nitrogen on highly and medium acidic soils, after chemical reclamation is increased by 30–50 %, and slightly acidic by 15–20 %. The increase in productivity of crops from the combined eff ects of nutrients and chalk granulated is usually higher than when separately applied. The eff ectiveness of the integrated action of these elements is manifested in the growth of plant productivity and the quality of the resulting products, as well as the optimization of physical chemical properties and soil buff ering in the long term. In order to optimize the physicochemical properties of the arable layer of gray forest soil and the productive nutrition of agricultural crops, winter wheat, in particular, biogenic elements should be used in doses N60-90-120P30-45- 60K60-90-120 with granulated chalk «Slavuta-Calcium» in doses of Ca230-460-690 kg/ha of active substance. Granulated chalk obtained as a result of industrial grinding of solid sedimentary carbonate rocks of natural origin, subsequently under the infl uence of the granulation process of the starting material contains Ca and Mg carbonates of at least 95 %, dense granules which facilitates convenient mechanized application, as well as chalk suitable for accurate metered application on the quest map. Key words: granular chalk, gray forest soil, chemical reclamation, crop productivity.


Sign in / Sign up

Export Citation Format

Share Document