Changes in Yangtze Precipitation Extremes and the association with thermodynamic, dynamic, and local drivers  

Author(s):  
Xin Li

<p>Spatioteporal variability of precipitation extremes is increasingly the focus of attention in both the climate and hydrology communites, especailly in the context of global climate change. Indicated by the Clausius-Clapeyron equation under the constant relative humudity assumption, it is expected, from the thermodynamic perspective, that extreme precipitation would increase as globe warms. However, when it comes to the regional response of precipitation to global warming, the resutls could be highly uncertain due to the influences of dynamic factors such as large-scale circlation patterns and local effects. Here, we investigate trends in a set of extreme precipitation indices (EPIs) over the Yangtze River Basin (YRB) during the period of 1960-2019. Also, we explore the possible associations between spatiotemporal variability of the EPIs and global warming, ENSO, and local effects. Our resutls show marked rising trends in frequency and intensity of Yangtze precipitation extremes. Global warming tends to enhance the frequency and intensity of preciptation extremes over the YRB. The La Niña phase of ENSO could lead to an increase of precipitation extremes in the current year, but a decrease of precipitation extremes in the coming year. Local warming mainly exerts a reducing effect on precipitation extremes, which is likely associated with the significant decrease of relative humidity in the YRB. Our findings highlight the need for a systematic approach to investigate changes in precipitation extremes over the YRB.</p>

2020 ◽  
Author(s):  
Andrew Williams ◽  
Paul O'Gorman

<p>Changes in extreme precipitation are amongst the most impactful consequences of global warming, with potential effects ranging from increased flood risk and landslides to crop failures and impacts on ecosystems. Thus, understanding historical and future changes in extreme precipitation is not only important from a scientific perspective, but also has direct societal relevance.</p><p>However, while most current research has focused on annual precipitation extremes and their response to warming, it has recently been noted that climate model projections show a distinct seasonality to future changes in extreme precipitation. In particular, CMIP5 models suggest that over Northern Hemisphere (NH) land the summer response is weaker than the winter response in terms of percentage changes.</p><p>Here we investigate changes in seasonal precipitation extremes using observations and simulations with coupled climate models. First, we analyse observed trends from the Hadley Centre’s global climate extremes dataset (HadEX2) to investigate to what extent there is already a difference between summer and winter trends over NH land. Second, we use 40 ensemble members from the CESM Large Ensemble to characterize the role played by internal variability in trends over the historical period. Lastly, we use CMIP5 simulations to explore the possibility of a link between the seasonality of changes in precipitation extremes and decreases in surface relative humidity over land.</p>


2020 ◽  
Vol 33 (23) ◽  
pp. 10055-10072
Author(s):  
Chujie Gao ◽  
Gen Li ◽  
Bei Xu

AbstractThe seasonal prediction of precipitation extremes over the Yangtze River basin (YRB) has always been a great challenge. This study investigated the effects of spring soil moisture over the Indo-China Peninsula (ICP) on the following summer mei-yu front and YRB precipitation extremes during 1961–2010. The results indicated that the frequency of summer YRB precipitation extremes was closely associated with the mei-yu front intensity, which exhibited a strong negative correlation with the preceding spring ICP soil moisture. However, the lingering climate influence of the ICP soil moisture was unstable, with an obvious weakening since the early 1990s. Due to its strong memory, an abnormally lower spring soil moisture over the ICP would increase local temperature until the summer by inducing less evapotranspiration. Before the early 1990s, the geopotential height elevation associated with the ICP heating affected the western Pacific subtropical high (WPSH), strengthening the southwesterly summer monsoon. Consequently, the mei-yu front was intensified as more warm, wet air was transported to the YRB, and local precipitation extremes also occurred more frequently associated with abnormal ascending motion mainly maintained by the warm temperature advection. In the early 1990s, the Asian summer monsoon underwent an abrupt shift, with the changing climatological states of the large-scale circulations. Therefore, the similar ICP heating induced by the anomalous soil moisture had different effects on the monsoonal circulation, resulting in weakened responses of the mei-yu front and YRB precipitation extremes since the early 1990s.


2014 ◽  
Vol 18 (2) ◽  
pp. 709-725 ◽  
Author(s):  
A. Casanueva ◽  
C. Rodríguez-Puebla ◽  
M. D. Frías ◽  
N. González-Reviriego

Abstract. A growing interest in extreme precipitation has spread through the scientific community due to the effects of global climate change on the hydrological cycle, and their threat to natural systems' higher than average climatic values. Understanding the variability of precipitation indices and their association to atmospheric processes could help to project the frequency and severity of extremes. This paper evaluates the trend of three precipitation extremes: the number of consecutive dry/wet days (CDD/CWD) and the quotient of the precipitation in days where daily precipitation exceeds the 95th percentile of the reference period and the total amount of precipitation (or contribution of very wet days, R95pTOT). The aim of this study is twofold. First, extreme indicators are compared against accumulated precipitation (RR) over Europe in terms of trends using non-parametric approaches. Second, we analyse the geographically opposite trends found over different parts of Europe by considering their relationships with large-scale processes, using different teleconnection patterns. The study is accomplished for the four seasons using the gridded E-OBS data set developed within the EU ENSEMBLES project. Different patterns of variability were found for CWD and CDD in winter and summer, with north–south and east–west configurations, respectively. We consider physical factors in order to understand the extremes' variability by linking large-scale processes and precipitation extremes. Opposite associations with the North Atlantic Oscillation in winter and summer, and the relationships with the Scandinavian and East Atlantic patterns as well as El Niño/Southern Oscillation events in spring and autumn gave insight into the trend differences. Significant relationships were found between the Atlantic Multidecadal Oscillation and R95pTOT during the whole year. The largest extreme anomalies were analysed by composite maps using atmospheric variables and sea surface temperature. The association of extreme precipitation indices and large-scale variables found in this work could pave the way for new possibilities regarding the projection of extremes in downscaling techniques.


2021 ◽  
Author(s):  
Saurav Saha ◽  
Debasish Chakraborty ◽  
Samarendra Hazarika ◽  
I. Shakuntala ◽  
Bappa Das ◽  
...  

Abstract The present study acknowledged climate variability induced periodic variation in localized extreme weather event occurrences under diverse agro eco-regions of Eastern Himalayas of India during past five decades. The widespread rise in warm nights (TN90p; 0.31-1.67 days year-1), reduced daily rainfall intensity (SDII) and changes in other weather extremes viz. temperature and precipitation extremes signified clear signals on regional atmospheric warming across eastern India. The agro-ecological regions under extended Bramhaputra valley and coastal belts of south Bengal experienced the most persistent shifts in temperature extremes, while the upper Himalayan range extended from North Bengal to Arunachal Pradesh experienced the steepest decline in average daily rainfall intensity and other absolute quantitative estimates of precipitation extremes over past five decades. Together with El Niño and La Niña events, large scale global atmospheric circulations particularly expansion of warmer Pacific Warm Pool (PWP) and changes in Atlantic Meridional Mode (AMM) contributed the periodic dynamics in weather extreme occurrences from monthly to annual time scale over eastern India. Our findings will be useful for better understanding of regional climatology, designing and successful implantation of location-specific suitable agricultural policies towards climate change adaptation in near future.


2021 ◽  
Vol 13 (15) ◽  
pp. 3023
Author(s):  
Jinghua Xiong ◽  
Shenglian Guo ◽  
Jiabo Yin ◽  
Lei Gu ◽  
Feng Xiong

Flooding is one of the most widespread and frequent weather-related hazards that has devastating impacts on the society and ecosystem. Monitoring flooding is a vital issue for water resources management, socioeconomic sustainable development, and maintaining life safety. By integrating multiple precipitation, evapotranspiration, and GRACE-Follow On (GRAFO) terrestrial water storage anomaly (TWSA) datasets, this study uses the water balance principle coupled with the CaMa-Flood hydrodynamic model to access the spatiotemporal discharge variations in the Yangtze River basin during the 2020 catastrophic flood. The results show that: (1) TWSA bias dominates the overall uncertainty in runoff at the basin scale, which is spatially governed by uncertainty in TWSA and precipitation; (2) spatially, a field significance at the 5% level is discovered for the correlations between GRAFO-based runoff and GLDAS results. The GRAFO-derived discharge series has a high correlation coefficient with either in situ observations and hydrological simulations for the Yangtze River basin, at the 0.01 significance level; (3) the GRAFO-derived discharge observes the flood peaks in July and August and the recession process in October 2020. Our developed approach provides an alternative way of monitoring large-scale extreme hydrological events with the latest GRAFO release and CaMa-Flood model.


2013 ◽  
Vol 116 (3-4) ◽  
pp. 447-461 ◽  
Author(s):  
Yongqin David Chen ◽  
Qiang Zhang ◽  
Mingzhong Xiao ◽  
Vijay P. Singh ◽  
Yee Leung ◽  
...  

Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1089 ◽  
Author(s):  
Yifeng Peng ◽  
Xiang Zhao ◽  
Donghai Wu ◽  
Bijian Tang ◽  
Peipei Xu ◽  
...  

Extreme precipitation events, which have intensified with global warming over the past several decades, will become more intense in the future according to model projections. Although many studies have been performed, the occurrence patterns for extreme precipitation events in past and future periods in China remain unresolved. Additionally, few studies have explained how extreme precipitation events developed over the past 58 years and how they will evolve in the next 90 years as global warming becomes much more serious. In this paper, we evaluated the spatiotemporal characteristics of extreme precipitation events using indices for the frequency, quantity, intensity, and proportion of extreme precipitation, which were proposed by the World Meteorological Organization. We simultaneously analyzed the spatiotemporal characteristics of extreme precipitation in China from 2011 to 2100 using data obtained from the Coupled Model Intercomparison Project Phase 5 (CMIP5) models. Despite the fixed threshold, 95th percentile precipitation values were also used as the extreme precipitation threshold to reduce the influence of various rainfall events caused by different geographic locations; then, eight extreme precipitation indices (EPIs) were calculated to evaluate extreme precipitation in China. We found that the spatial characteristics of the eight EPIs exhibited downward trends from south to north. In the periods 1960–2017 and 2011–2100, trends in the EPIs were positive, but there were differences between different regions. In the past 58 years, the extreme precipitation increased in the northwest, southeast, and the Tibet Plateau of China, while decreased in northern China. Almost all the trends of EPIs are positive in the next two periods (2011–2055 and 2056–2100) except for some EPIs, such as intensity of extreme precipitation, which decrease in southeastern China in the second period (2056–2100). This study suggests that the frequency of extreme precipitation events in China will progressively increase, which implies that a substantial burden will be placed on social economies and terrestrial ecological processes.


2018 ◽  
Vol 32 (1) ◽  
pp. 195-212 ◽  
Author(s):  
Sicheng He ◽  
Jing Yang ◽  
Qing Bao ◽  
Lei Wang ◽  
Bin Wang

AbstractRealistic reproduction of historical extreme precipitation has been challenging for both reanalysis and global climate model (GCM) simulations. This work assessed the fidelities of the combined gridded observational datasets, reanalysis datasets, and GCMs [CMIP5 and the Chinese Academy of Sciences Flexible Global Ocean–Atmospheric Land System Model–Finite-Volume Atmospheric Model, version 2 (FGOALS-f2)] in representing extreme precipitation over East China. The assessment used 552 stations’ rain gauge data as ground truth and focused on the probability distribution function of daily precipitation and spatial structure of extreme precipitation days. The TRMM observation displays similar rainfall intensity–frequency distributions as the stations. However, three combined gridded observational datasets, four reanalysis datasets, and most of the CMIP5 models cannot capture extreme precipitation exceeding 150 mm day−1, and all underestimate extreme precipitation frequency. The observed spatial distribution of extreme precipitation exhibits two maximum centers, located over the lower-middle reach of Yangtze River basin and the deep South China region, respectively. Combined gridded observations and JRA-55 capture these two centers, but ERA-Interim, MERRA, and CFSR and almost all CMIP5 models fail to capture them. The percentage of extreme rainfall in the total rainfall amount is generally underestimated by 25%–75% in all CMIP5 models. Higher-resolution models tend to have better performance, and physical parameterization may be crucial for simulating correct extreme precipitation. The performances are significantly improved in the newly released FGOALS-f2 as a result of increased resolution and a more realistic simulation of moisture and heating profiles. This work pinpoints the common biases in the combined gridded observational datasets and reanalysis datasets and helps to improve models’ simulation of extreme precipitation, which is critically important for reliable projection of future changes in extreme precipitation.


2020 ◽  
Vol 117 (16) ◽  
pp. 8757-8763 ◽  
Author(s):  
Ji Nie ◽  
Panxi Dai ◽  
Adam H. Sobel

Responses of extreme precipitation to global warming are of great importance to society and ecosystems. Although observations and climate projections indicate a general intensification of extreme precipitation with warming on global scale, there are significant variations on the regional scale, mainly due to changes in the vertical motion associated with extreme precipitation. Here, we apply quasigeostrophic diagnostics on climate-model simulations to understand the changes in vertical motion, quantifying the roles of dry (large-scale adiabatic flow) and moist (small-scale convection) dynamics in shaping the regional patterns of extreme precipitation sensitivity (EPS). The dry component weakens in the subtropics but strengthens in the middle and high latitudes; the moist component accounts for the positive centers of EPS in the low latitudes and also contributes to the negative centers in the subtropics. A theoretical model depicts a nonlinear relationship between the diabatic heating feedback (α) and precipitable water, indicating high sensitivity of α (thus, EPS) over climatological moist regions. The model also captures the change of α due to competing effects of increases in precipitable water and dry static stability under global warming. Thus, the dry/moist decomposition provides a quantitive and intuitive explanation of the main regional features of EPS.


Sign in / Sign up

Export Citation Format

Share Document