Heterogenous Patterns in Leaf Phenology Across a Climate Gradient in Maritime Canada Observed through Phenocams

Author(s):  
Lynsay Spafford ◽  
Andrew H. MacDougall

<p>Leaf phenology, the timing of leaf life cycle events, is a vital indicator of terrestrial biosphere function. The influence of global change upon leafing phenology in mid to high latitude regions is uncertain due to a complex interaction of drivers and lack of temporally and spatially resolved baseline data.  Leaf phenology has been observed manually for millennia, and through satellite platforms for decades. A novel technique of monitoring leaf phenology known as near remote sensing employing time-lapse photography at the canopy level (or phenocams) allows for objective observations with high temporal and spatial resolution. We deployed 13 solar-powered time-lapse camera stations across a climate gradient in Nova Scotia, Canada to observe leaf phenology of locally abundant species including more than 300 individuals over the 2019 and 2020 growing seasons. To examine the influence of thermal, photoperiodic, and genetic drivers, our remote phenology monitoring stations were situated in comparative edaphic and topographic contexts and complemented with relative humidity and ambient temperature sensors. We observed variability in the timing of leaf budburst, peak of season greenness, redness, senescence, and abscission between and within species, despite similar degrees of environmental forcing. Moving forward, we will apply our insights to develop species specific process based models of leaf phenology, and test the wider application of our techniques to observational records from other regions. This work demonstrates the complexity of environmental influence upon leaf phenology, as well as the utility of phenocams in monitoring leafing phenology in remote regions of Maritime Canada.</p>

Ecosphere ◽  
2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Yingying Xie ◽  
Daniel L. Civco ◽  
John A. Silander

2021 ◽  
Vol 14 ◽  
pp. 194008292110103
Author(s):  
Patrick Jules Atagana ◽  
Eric Moïse Bakwo Fils ◽  
Sevilor Kekeunou

We aimed to assess how bats are affected by habitat transformation by comparing bat assemblages in four habitat types: primary forest, secondary forest, cocoa plantations and human habitations in the Dja Biosphere Reserve of southern Cameroon. Bats were sampled in the four habitat types using mist nets. During 126 nights, a total of 413 bats were captured, belonging to four families, 16 genera and 24 species. Ninety three individuals (17 species) were captured in the primary forest, followed by plantations (105 individuals, 14 species), human habitations (159 individuals, 10 species), and secondary forest (55 individuals, eight species). Megaloglossus woermanni was recorded in all the four habitats, and was the most abundant species (105 individuals). The analysis of bat assemblage between habitat types showed a statistically significant difference in species composition. The distribution of the six most abundant species ( Epomops franqueti, Megaloglossus woermanni, Rousettus aegyptiacus, Dohyrina cyclops, Hipposideros cf. caffer and Hipposideros cf. ruber) was influenced by habitat types. Our results suggest that the decrease in species richness observed in disturbed habitats may be due to habitat perturbations of primary forest habitats. Therefore, it is important to examine the effects of habitat conversion at species level, as responses are often species-specific.


1993 ◽  
Vol 23 (10) ◽  
pp. 2286-2299 ◽  
Author(s):  
R.A. Lautenschlager

Reviewed studies of the effects of forest herbicide applications on wildlife often lacked replication, pretreatment information, and (or) were conducted for only one or two growing seasons after treatment. Because of these problems, as well as the use of dissimilar sampling techniques, study conclusions have sometimes been contradictory. A review of eight studies of the effects of herbicide treatments on northern songbird populations in regenerating clearcuts indicates that total songbird populations are seldom reduced during the growing season after treatment. Densities of species that use early successional brushy, deciduous cover are sometimes reduced, while densities of species which commonly use more open areas, sometimes increase. A review of 14 studies of the effects of herbicide treatments on small mammals indicates that like songbirds, small mammal responses are species specific. Some species are unaffected, while some select and others avoid herbicide-treated areas. Only studies that use kill or removal trapping to study small mammal responses show density reductions associated with herbicide treatment. It seems that some small mammal species may be reluctant to venture into disturbed areas, although residents in those areas are apparently not affected by the disturbance. Fourteen relevant studies examined the effects of conifer release treatments on moose and deer foods and habitat use. Conifer release treatments reduce the availability of moose browse for as long as four growing seasons after treatment. The degree of reduction during the growing season after treatment varies with the herbicide and rate used. Deer use of treated areas remains unchanged or increases during the first growing season after treatment. Eight years after treating a naturally regenerated spruce–fir stand browse was three to seven times more abundant on treated than on control plots (depending on the chemical and rate used). Forage quality (nitrogen, ash, and moisture) of crop trees increased one growing season after the soil-active herbicide simazine was applied to control competition around outplanted 3-year-old balsam fir seedlings.


<em>Abstract</em>.—The objective of this study is to describe the distribution patterns of abundance and biomass, on a geographic and bathymetric basis, of the main macrourid species of Mozambique waters. Catch data from a demersal trawl survey (<EM>MOZAMBIQUE 07</EM>) were analyzed. The survey covered the continental shelf and upper-middle slope from 17°00’S to 26°50’S and from 100–700 m depth. Fourteen macrourid species were collected from 200 m and deeper. The most abundant species and the highest in biomass were <em>Coelorinchus braueri</em>, <em>C. trunovi, C. denticulatus</em>, <em>Ventrifossa nasuta</em>, and <em>Malacocephalus laevis</em>. Only those five species were analyzed in detail. The occurrence and yields by geographic and bathymetric range of these main species seem to reveal the existence of some species-specific preference for determinate depth ranges and/or geographic areas. Preanal length-weight relationships were estimated for <em>C. braueri, C. trunovi, </em>and <em>V. nasuta</em>: <em>a</em>= 0.00071; 0.00020; 0.00080; <em>b</em>= 2.50; 2.80; 2.76 and <em>r</em><sup>2</sup>= 0.93; 0.97; 0.78, respectively.


Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 556 ◽  
Author(s):  
Masahiro Yamaguchi ◽  
Yoshiyuki Kinose ◽  
Hideyuki Matsumura ◽  
Takeshi Izuta

The current level of tropospheric ozone (O3) is expected to reduce the net primary production of forest trees. Here, we evaluated the negative effects of O3 on the photosynthetic CO2 uptake of Japanese forest trees species based on their cumulative stomatal O3 uptake, defined as the phytotoxic O3 dose (POD). Seedlings of four representative Japanese deciduous broad-leaved forest tree species (Fagus crenata, Quercus serrata, Quercus mongolica var. crispula and Betula platyphylla var. japonica) were exposed to different O3 concentrations in open-top chambers for two growing seasons. The photosynthesis–light response curves (A-light curves) and stomatal conductance were measured to estimate the leaf-level cumulative photosynthetic CO2 uptake (ΣPn_est) and POD, respectively. The whole-plant-level ΣPn_est were highly correlated with the whole-plant dry mass increments over the two growing seasons. Because whole-plant growth is largely determined by the amount of leaf area per plant and net photosynthetic rate per leaf area, this result suggests that leaf-level ΣPn_est, which was estimated from the monthly A-light curves and hourly PPFD, could reflect the cumulative photosynthetic CO2 uptake of the seedlings per unit leaf area. Although the O3-induced reductions in the leaf-level ΣPn_est were well explained by POD in all four tree species, species-specific responses of leaf-level ΣPn_est to POD were observed. In addition, the flux threshold appropriate for the linear regression of the responses of relative leaf-level ΣPn_est to POD was also species-specific. Therefore, species-specific responses of cumulative photosynthetic CO2 uptake to POD could be used to accurately evaluate O3 impact on the net primary production of deciduous broad-leaved trees.


Plant Disease ◽  
2015 ◽  
Vol 99 (12) ◽  
pp. 1832-1840 ◽  
Author(s):  
Lina M. Rodriguez-Salamanca ◽  
Lina M. Quesada-Ocampo ◽  
Rachel P. Naegele ◽  
Mary K. Hausbeck

Leaf curling and petiole twisting of celery (Apium graveolens) were observed in several commercial fields in five Michigan counties in 2010 through 2012, causing significant crop damage and loss. Prior to this time, the pathogen Colletotrichum acutatum species complex had not been previously associated with celery in Michigan. In this study, the pathogen’s genotype and phenotype were characterized, the influence of environmental conditions determined, and fungicides tested. Pathogen identification was based on conidial morphology and molecular identification using species-specific primers. Intersimple-sequence repeat (ISSR) banding patterns were similar between C. acutatum isolates from celery (n = 51) and blueberry (n = 1) but different from C. dematium and C. gloeosporioides. Four ISSR primers resulted in 4% polymorphism when tested on isolates from celery. Pathogenicity and virulence of C. acutatum sensu lato isolated from celery (n = 81), tomato (n = 2), and blueberry (n = 1) were evaluated in greenhouse experiments, which revealed differences in virulence among isolates but no significant differences specific to collection year, county, or field. In dew chambers and growth chambers, high temperatures (≥25°C) or long leaf wetness duration (>24 h) increased disease incidence. Twelve fungicides were tested in field studies over two growing seasons to determine their efficacy against celery anthracnose. The fungicides azoxystrobin, pyraclostrobin, mancozeb, and chlorothalonil reduced disease by 27 to 50% compared with the untreated control when disease pressure was moderate.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Vít Dvořák ◽  
Nikolaos Tsirigotakis ◽  
Christoforos Pavlou ◽  
Emmanouil Dokianakis ◽  
Mohammad Akhoundi ◽  
...  

Abstract Background The Greek island of Crete is endemic for both visceral leishmaniasis (VL) and recently increasing cutaneous leishmaniasis (CL). This study summarizes published data on the sand fly fauna of Crete, the results of new sand fly samplings and the description of a new sand fly species. Methods All published and recent samplings were carried out using CDC light traps, sticky traps or mouth aspirators. The specific status of Phlebotomus (Adlerius) creticus n. sp., was assessed by morphological analysis, cytochrome b (cytb) sequencing and MALDI-TOF protein profiling. Results Published data revealed the presence of 10 Phlebotomus spp. and 2 Sergentomyia spp. During presented field work, 608 specimens of 8 species of Phlebotomus and one species of Sergentomyia were collected. Both published data and present samplings revealed that the two most common and abundant species were Phlebotomus neglectus, a proven vector of Leishmania infantum causing VL, and Ph. similis, a suspected vector of L. tropica causing CL. In addition, the field surveys revealed the presence of a new species, Ph. (Adlerius) creticus n. sp. Conclusions The identification of the newly described species is based on both molecular and morphological criteria, showing distinct characters of the male genitalia that differentiate it from related species of the subgenus Adlerius as well as species-specific sequence of cytb and protein spectra generated by MALDI-TOF mass spectrometry.


2013 ◽  
Vol 71 (2) ◽  
pp. 272-281 ◽  
Author(s):  
Stéphane Plourde ◽  
Ian H. McQuinn ◽  
Frédéric Maps ◽  
Jean-François St-Pierre ◽  
Diane Lavoie ◽  
...  

Abstract Plourde, S., McQuinn, I. H., Maps, F., St-Pierre, J-F., Lavoie, D., and Joly, P. 2014. Daytime depth and thermal habitat of two sympatric krill species in response to surface salinity variability in the Gulf of St Lawrence, eastern Canada. – ICES Journal of Marine Science, 71: 272–281. We describe the response of acoustically determined weighted mean depth (WMD) of two sympatric species of krill, Thysanoessa raschii and Meganyctiphanes norvegica, to variations in surface salinity during summer in the Gulf of St Lawrence. In this coastal system, non-living particulates and CDOM carried by the freshwater run-off of the St Lawrence River and several large rivers have a strong impact on turbidity and light attenuance in the surface layer. The WMD of T. raschii and M. norvegica were significantly and positively related to surface salinity. However, M. norvegica was found deeper and in warmer water than T. raschii, and the latter had a steeper response to surface salinity. The species-specific relationships between daytime WMD and surface salinity enabled us to estimate both species regional and interannual variations in summertime temperature habitat during a 21-year period (1991–2011). The variability in daytime WMD resulted in significant inter- and intraspecific differences in the temperature experienced by adult krill that may impact development, growth, and reproduction. Our study illustrated the importance of considering species-specific responses to environmental forcing in coupled biophysical models that aim to explore the impacts of environmental variations on krill dynamics.


2010 ◽  
Vol 58 (4) ◽  
pp. 299-314 ◽  
Author(s):  
Alicia Acuña Plavan ◽  
Cecilia Passadore ◽  
Luis Gimenez

The seasonal dynamics of the fish community in the Pando estuary on the Uruguayan coast were studied in relation to environmental sampled monthly between May 2002 and June 2003. Individuals collected were identified, and classified into stages (juveniles, adults) and functional groups. Relationships between community dynamics and environmental variables were evaluated using uni- and multivariate techniques. Twenty-one species, mostly freshwater stragglers, estuarine and marine migrants were collected. The most abundant species were Micropogonias furnieri, Mugil platanus, Paralichthys orbignyanus and Brevoortia aurea and were represented by juveniles. The community varied seasonally with rapid shifts in spring and autumn associated with changes in temperature and salinity. Significant correlations between abundance and temperature may be related to the timing of life cycle events. In this estuary, the salinity appears to play a key role in the functional structure and in the use of the habitat by juveniles. This is relevant for the definition of estuaries as nursery areas: this definition is context-dependent and is determined by the salinity conditions.


2015 ◽  
Vol 72 (8) ◽  
pp. 2350-2363 ◽  
Author(s):  
Ryan R. E. Stanley ◽  
Ian R. Bradbury ◽  
Claudio DiBacco ◽  
Paul V. R. Snelgrove ◽  
Simon R. Thorrold ◽  
...  

Abstract We evaluated the influence of environmental exposure of juvenile Atlantic cod (Gadus morhua) to inform interpretations of natal origins and movement patterns using otolith geochemistry. Laboratory rearing experiments were conducted with a variety of temperature (∼5, 8.5, and 12°C) and salinity (∼25, 28.5, and 32 PSU) combinations. We measured magnesium (Mg), manganese (Mn), strontium (Sr), and barium (Ba), expressed as a ratio to calcium (Ca), using laser ablation inductively coupled plasma mass spectrometry (ICP-MS), and stable carbon (δ13C) and oxygen (δ18O) isotopes using isotope ratio monitoring mass spectrometry. Temperature and salinity significantly affected all elements and isotopes measured, except salinity on Mg:Ca. We detected significant interactions among temperature and salinity for Mn:Ca and Ba:Ca partition coefficients (ratio of otolith chemistry to water chemistry), with significant temperature effects only detected in the 32 and 28.5 PSU salinity treatments. Similarly, we detected a significant interaction between temperature and salinity in incorporation of δ13C, with a significant temperature effect except at intermediate salinity. These results support the contention that environmental mediation of otolith composition varies among species, thus limiting the ability of generalized models to infer life history patterns from chemistry. Our results provide essential baseline information detailing environmental influence on juvenile Atlantic cod otolith composition, punctuating the importance of laboratory validations to translate species-specific otolith composition when inferring in situ life histories and movements.


Sign in / Sign up

Export Citation Format

Share Document