scholarly journals Daytime depth and thermal habitat of two sympatric krill species in response to surface salinity variability in the Gulf of St Lawrence, eastern Canada

2013 ◽  
Vol 71 (2) ◽  
pp. 272-281 ◽  
Author(s):  
Stéphane Plourde ◽  
Ian H. McQuinn ◽  
Frédéric Maps ◽  
Jean-François St-Pierre ◽  
Diane Lavoie ◽  
...  

Abstract Plourde, S., McQuinn, I. H., Maps, F., St-Pierre, J-F., Lavoie, D., and Joly, P. 2014. Daytime depth and thermal habitat of two sympatric krill species in response to surface salinity variability in the Gulf of St Lawrence, eastern Canada. – ICES Journal of Marine Science, 71: 272–281. We describe the response of acoustically determined weighted mean depth (WMD) of two sympatric species of krill, Thysanoessa raschii and Meganyctiphanes norvegica, to variations in surface salinity during summer in the Gulf of St Lawrence. In this coastal system, non-living particulates and CDOM carried by the freshwater run-off of the St Lawrence River and several large rivers have a strong impact on turbidity and light attenuance in the surface layer. The WMD of T. raschii and M. norvegica were significantly and positively related to surface salinity. However, M. norvegica was found deeper and in warmer water than T. raschii, and the latter had a steeper response to surface salinity. The species-specific relationships between daytime WMD and surface salinity enabled us to estimate both species regional and interannual variations in summertime temperature habitat during a 21-year period (1991–2011). The variability in daytime WMD resulted in significant inter- and intraspecific differences in the temperature experienced by adult krill that may impact development, growth, and reproduction. Our study illustrated the importance of considering species-specific responses to environmental forcing in coupled biophysical models that aim to explore the impacts of environmental variations on krill dynamics.

2020 ◽  
Vol 248 ◽  
pp. 111964 ◽  
Author(s):  
V.P. Akhil ◽  
J. Vialard ◽  
M. Lengaigne ◽  
M.G. Keerthi ◽  
J. Boutin ◽  
...  

1992 ◽  
Vol 70 (10) ◽  
pp. 1897-1903 ◽  
Author(s):  
J. R. Cardwell ◽  
J. G. Dulka ◽  
N. E. Stacey

The discovery that released hormones (steroids and prostaglandins) and their metabolites function as potent pheromones in some fishes provides an opportunity to determine whether these chemically identified pheromones are species specific. As a first step in studying this complex issue, we used an extracellular electrophysiological recording technique (electro-olfactogram) to investigate the olfactory sensitivity of two sympatrically spawning catostomid species (white sucker, Catostomus commersoni, and longnose sucker, Catostomus catostomus; Cypriniformes: Catostomidae) to steroids and prostaglandins that might function as sex pheromones. Both species were acutely sensitive to F-series prostaglandins, particularly prostaglandin-F2α and its metabolite 15-ketoprostaglandin-F2α, but exhibited no olfactory responses to free or conjugated gonadal steroids. The data from tests of olfactory sensitivity to a range of gonadal steroids, though negative, provide preliminary evidence that maturational steroid hormones do not function as pheromones in catostomids as they do in other cypriniform fishes. We were unable to detect species differences in receptor-level olfactory sensitivity to hormones or hormone metabolites, although we cannot discount possible differences at other levels of the olfactory system.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Göran Birgersson ◽  
Mark J. Dalusky ◽  
Karl E. Espelie ◽  
C. Wayne Berisford

Hindgut volatiles from attacking, unmated males ofIps avulsus, I. calligraphus, I. grandicollis, andI. piniwere analyzed by combined gas chromatography and mass spectrometry. Based on the quantitative identifications of hindguts and subsequent individual aerations, baits were formulated and a combined species-specific subtractive field bioassay was set up for the four bark beetle species. The bioassays were subtractive for the compounds identified in the hindgut analysis of each species, and volatiles identified in sympatric species were added as potential inhibitors alone and in combination. The trap catches from this bioassay revealed strong interspecific inhibition. The subtractive assays showed thatI. grandicollisandI. calligraphusshare (–)-(4S)-cis-verbenol as one pheromone component, while their second, synergistic pheromone component, (–)-(S)-ipsenol inI. grandicollisand (±)-ipsdienol inI. calligraphus, acts as an interspecific inhibitor to the other species.I. avulsusandI. piniwere found to have very similar production of hindgut volatiles, and both use ipsdienol and lanierone as synergistic pheromone components. No beetle-produced interspecific inhibitor was identified between these two species. Lanierone was found to be an interspecific inhibitor for bothI. calligraphusandI. grandicollis.


2014 ◽  
Vol 65 (2) ◽  
pp. 173-186 ◽  
Author(s):  
Akurathi Venkata Sai Chaitanya ◽  
Fabien Durand ◽  
Simi Mathew ◽  
Vissa Venkata Gopalakrishna ◽  
Fabrice Papa ◽  
...  

2009 ◽  
Vol 60 (8) ◽  
pp. 787 ◽  
Author(s):  
W. A. Nelson

Calcified macroalgae are distributed in marine habitats from polar to tropical latitudes and from intertidal shores to the deepest reaches of the euphotic zone. These algae play critical ecological roles including being key to a range of invertebrate recruitment processes, functioning as autogenic ecosystem engineers through provision of three-dimensional habitat structure, as well as contributing critical structural strength in coral reef ecosystems. Calcified macroalgae contribute significantly to the deposition of carbonates in coastal environments. These organisms are vulnerable to human-induced changes resulting from land and coastal development, such as altered patterns of sedimentation, nutrient enrichment through sewage and agricultural run-off, and are affected by coastal dredging and aquaculture. The consequences of increasing sea surface temperatures and fundamental changes in the carbon chemistry of seawater due to CO2 emissions from anthropogenic activities will have serious impacts on calcifying macroalgae. It is not yet understood how interactions between a range of variables acting at local and global scales will influence the viability of calcifying macroalgae and associated ecosystems. Research is urgently needed on all aspects of the taxonomy, biology and functional ecology of calcifying macroalgae. Without an understanding of the species present, measurement of change and understanding species-specific responses will not be possible.


2021 ◽  
Vol 9 (12) ◽  
pp. 2420
Author(s):  
Yosef Hamba Tola ◽  
Jacqueline Wahura Waweru ◽  
Nelly N. Ndungu ◽  
Kiatoko Nkoba ◽  
Bernard Slippers ◽  
...  

Stingless bees (Apidae: Meliponini) are the most diverse group of corbiculate bees and are important managed and wild pollinators distributed in the tropical and subtropical regions of the globe. However, little is known about their associated beneficial microbes that play major roles in host nutrition, detoxification, growth, activation of immune responses, and protection against pathogens in their sister groups, honeybees and bumble bees. Here, we provide an initial characterization of the gut bacterial microbiota of eight stingless bee species from sub-Saharan Africa using 16S rRNA amplicon sequencing. Our findings revealed that Firmicutes, Actinobacteria, and Proteobacteria were the dominant and conserved phyla across the eight stingless bee species. Additionally, we found significant geographical and host intra-species-specific bacterial diversity. Notably, African strains showed significant phylogenetic clustering when compared with strains from other continents, and each stingless bee species has its own microbial composition with its own dominant bacterial genus. Our results suggest host selective mechanisms maintain distinct gut communities among sympatric species and thus constitute an important resource for future studies on bee health management and host-microbe co-evolution and adaptation.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 58
Author(s):  
King-Siang Goh ◽  
Chia-Ming Lee ◽  
Tzi-Yuan Wang

It is highly challenging to evaluate the species’ content and behavior changes in wild fireflies, especially for a sympatric population. Here, the flash interval (FI) and flash duration (FD) of flying males from three sympatric species (Abscondita cerata, Luciola kagiana, and Luciola curtithorax) were investigated for their potentials in assessing species composition and nocturnal behaviors during the A. cerata mating season. Both FI and FD were quantified from the continuous flashes of adult fireflies (lasting 5–30 s) via spatiotemporal analyses of video recorded along the Genliao hiking trail in Taipei, Taiwan. Compared to FD patterns and flash colors, FI patterns exhibited the highest species specificity, making them a suitable reference for differentiating firefly species. Through the case study of a massive occurrence of A. cerata (21 April 2018), the species contents (~85% of the flying population) and active periods of a sympatric population comprising A. cerata and L. kagiana were successfully evaluated by FI pattern matching, as well as field specimen collections. Our study suggests that FI patterns may be a reliable species-specific luminous marker for monitoring the behavioral changes in a sympatric firefly population in the field, and has implication values for firefly conservation.


2020 ◽  
Author(s):  
Kenneth Dumack ◽  
Kai Feng ◽  
Sebastian Flues ◽  
Melanie Sapp ◽  
Susanne Schreiter ◽  
...  

AbstractIn a field experiment we investigated the influence of the environmental filters soil type and plant species identity on rhizosphere community assembly of Cercozoa, a dominant group of (mostly bacterivorous) soil protists. The experiment was set up with two plant species, lettuce and potato, grown in an experimental plot system with three contrasting soils. Plant species (14%) and rhizosphere origin (vs. bulk soil) with 13%, together explained four times more variation in cercozoan beta diversity than the three soil types (7% explained variation in beta diversity). Our results clearly confirm the existence of plant species-specific protist communities. Network analyses of bacteria-Cercozoa rhizosphere communities identified scale-free small world topologies, indicating mechanisms of self-organization. While the assembly of rhizosphere bacterial communities is bottom-up controlled through the resource supply from root (secondary) metabolites, our results support the hypothesis that the net effect may depend on the strength of top-down control by protist grazers. Since grazing of protists has a strong impact on the composition and functioning of bacteria communities, protists expand the repertoire of plant genes by functional traits, and should be considered as ‘protist microbiomes’ in analogy to ‘bacterial microbiomes’.HighlightMicrobiomes of rhizosphere protists are plant species-specific and tightly co-evolving with their bacterial prey, thereby extending and modifying the functional repertoire of the bacterial-plant symbiosis.


Sign in / Sign up

Export Citation Format

Share Document