Combining gliders and models to understand mesoscale biogeochemical patterns at the Angola-Benguela front

Author(s):  
Elisa Lovecchio ◽  
Stephanie Henson ◽  
Filipa Carvalho ◽  
Nathan Briggs

<p>The Angola-Benguela frontal region represents an extremely dynamic portion of the ocean located along the south-western African coast, at the northern edge of the South Atlantic gyre. At this boundary, the northern warm and saline waters of the Angola Basin mix with the southern colder and fresher waters carried by the Benguela current through a combination of processes that span a wide range of spatio-temporal scales. This study combines the use of underwater glider data collected between February and June 2018 with a high resolution 3D physical-biogeochemical model to investigate how these lateral exchanges impact the oxygen and organic carbon distributions in the proximity of the front. From the glider data, we identify a set of salinity, oxygen and organic carbon anomalies impacting the first 500 m of the water column during February-June 2018. Using satellite images of physical and biological data and an eddy identification algorithm, we discuss these anomalies in the context of the surrounding physical and biological setting at the time of measurement and identify key processes that may be responsible for the observed tracer patterns. We employ the Regional Ocean Modeling System (ROMS) coupled with the Biogeochemistry Ecosystem Circulation model (BEC) to further explain and upscale our findings. We study the dynamics of cross-frontal exchanges of oxygen and organic carbon in the first 500 m depth. We show how the coupling between long filaments and intense anticyclonic eddies forming at the front generates a complex pattern of recirculation of Angola Basin-derived saline and low-oxygen waters into the oxygenated Benguela region. Finally, we quantify the oxygen lateral transport coupled with these dynamics, and discuss the implications for the biological activity in the region.</p>

2017 ◽  
Vol 14 (13) ◽  
pp. 3337-3369 ◽  
Author(s):  
Elisa Lovecchio ◽  
Nicolas Gruber ◽  
Matthias Münnich ◽  
Zouhair Lachkar

Abstract. A compilation of measurements of net community production (NCP) in the upper waters of the eastern subtropical North Atlantic had suggested net heterotrophic conditions, purportedly supported by the lateral export of organic carbon from the adjacent, highly productive Canary Upwelling System (CanUS). Here, we quantify and assess this lateral export using the Regional Ocean Modeling System (ROMS) coupled to a nutrient, phytoplankton, zooplankton, and detritus (NPZD) ecosystem model. We employ a new Atlantic telescopic grid with a strong refinement towards the northwestern African shelf to combine an eddy-resolving resolution in the CanUS with a full Atlantic basin perspective. Our climatologically forced simulation reveals an intense offshore flux of organic carbon that transports about 19 Tg C yr−1 away from the nearshore 100 km over the whole CanUS, amounting to more than a third of the NCP in this region. The offshore transport extends beyond 1500 km into the subtropical North Atlantic, adding organic carbon along the way to the upper 100 m at rates of between 8 and 34 % of the alongshore average NCP as a function of offshore distance. Although the divergence of this lateral export of organic carbon enhances local respiration, the upper 100 m layer in our model remains net autotrophic in the entire eastern subtropical North Atlantic. However, the vertical export of this organic carbon and its subsequent remineralization at depth makes the vertically integrated NCP strongly negative throughout this region, with the exception of a narrow band along the northwestern African shelf. The magnitude and efficiency of the lateral export varies substantially between the different subregions. In particular, the central coast near Cape Blanc is particularly efficient in collecting organic carbon on the shelf and subsequently transporting it offshore. In this central subregion, the offshore transport adds as much organic carbon as nearly 60 % of the local NCP to the upper 100 m, giving rise to a sharp peak of offshore respiration that extends to the middle of the gyre. Our modeled offshore transport of organic carbon is likely a lower-bound estimate due to our lack of full consideration of the contribution of dissolved organic carbon and that of particulate organic carbon stemming from the resuspension of sediments. But even in the absence of these contributions, our results emphasize the fundamental role of the lateral redistribution of the organic carbon for the maintenance of the heterotrophic activity in the open sea.


Ocean Science ◽  
2017 ◽  
Vol 13 (1) ◽  
pp. 31-46
Author(s):  
Joao Marcos Azevedo Correia de Souza ◽  
Brian Powell

Abstract. The dynamical interaction between currents, bathymetry, waves, and estuarine outflow has significant impacts on the surf zone. We investigate the impacts of two strategies to include the effect of surface gravity waves on an ocean circulation model of the south shore of O'ahu, Hawaii. This area provides an ideal laboratory for the development of nearshore circulation modeling systems for reef-protected coastlines. We use two numerical models for circulation and waves: Regional Ocean Modeling System (ROMS) and Simulating Waves Nearshore (SWAN) model, respectively. The circulation model is nested within larger-scale models that capture the tidal, regional, and wind-forced circulation of the Hawaiian archipelago. Two strategies are explored for circulation modeling: forcing by the output of the wave model and online, two-way coupling of the circulation and wave models. In addition, the circulation model alone provides the reference for the circulation without the effect of the waves. These strategies are applied to two experiments: (1) typical trade-wind conditions that are frequent during summer months, and (2) the arrival of a large winter swell that wraps around the island. The results show the importance of considering the effect of the waves on the circulation and, particularly, the circulation–wave coupled processes. Both approaches show a similar nearshore circulation pattern, with the presence of an offshore current in the middle beaches of Waikiki. Although the pattern of the offshore circulation remains the same, the coupled waves and circulation produce larger significant wave heights ( ≈  10 %) and the formation of strong alongshore and cross-shore currents ( ≈  1 m s−1).


2020 ◽  
Vol 12 (2) ◽  
pp. 1267-1285 ◽  
Author(s):  
Viena Puigcorbé ◽  
Pere Masqué ◽  
Frédéric A. C. Le Moigne

Abstract. The ocean's biological carbon pump (BCP) plays a major role in the global carbon cycle. A fraction of the photosynthetically fixed organic carbon produced in surface waters is exported below the sunlit layer as settling particles (e.g., marine snow). Since the seminal works on the BCP, global estimates of the global strength of the BCP have improved but large uncertainties remain (from 5 to 20 Gt C yr−1 exported below the euphotic zone or mixed-layer depth). The 234Th technique is widely used to measure the downward export of particulate organic carbon (POC). This technique has the advantage of allowing a downward flux to be determined by integrating the deficit of 234Th in the upper water column and coupling it to the POC∕234Th ratio in sinking particles. However, the factors controlling the regional, temporal, and depth variations of POC∕234Th ratios are poorly understood. We present a database of 9318 measurements of the POC∕234Th ratio in the ocean, from the surface down to >5500 m, sampled on three size fractions (∼>0.7 µm, ∼1–50 µm, ∼>50 µm), collected with in situ pumps and bottles, and also from bulk particles collected with sediment traps. The dataset is archived in the data repository PANGAEA® under https://doi.org/10.1594/PANGAEA.911424 (Puigcorbé, 2019). The samples presented in this dataset were collected between 1989 and 2018, and the data have been obtained from published papers and open datasets available online. Unpublished data have also been included. Multiple measurements can be found in most of the open ocean provinces. However, there is an uneven distribution of the data, with some areas highly sampled (e.g., China Sea, Bermuda Atlantic Time Series station) compared to some others that are not well represented, such as the southeastern Atlantic, the south Pacific, and the south Indian oceans. Some coastal areas, although in a much smaller number, are also included in this global compilation. Globally, based on different depth horizons and climate zones, the median POC∕234Th ratios have a wide range, from 0.6 to 18 µmol dpm−1.


2017 ◽  
Vol 10 (4) ◽  
pp. 1423-1445 ◽  
Author(s):  
Gianpiero Cossarini ◽  
Stefano Querin ◽  
Cosimo Solidoro ◽  
Gianmaria Sannino ◽  
Paolo Lazzari ◽  
...  

Abstract. In this paper, we present a coupling scheme between the Massachusetts Institute of Technology general circulation model (MITgcm) and the Biogeochemical Flux Model (BFM). The MITgcm and BFM are widely used models for geophysical fluid dynamics and for ocean biogeochemistry, respectively, and they benefit from the support of active developers and user communities. The MITgcm is a state-of-the-art general circulation model for simulating the ocean and the atmosphere. This model is fully 3-D (including the non-hydrostatic term of momentum equations) and is characterized by a finite-volume discretization and a number of additional features enabling simulations from global (O(107) m) to local scales (O(100) m). The BFM is a biogeochemical model based on plankton functional type formulations, and it simulates the cycling of a number of constituents and nutrients within marine ecosystems. The online coupling presented in this paper is based on an open-source code, and it is characterized by a modular structure. Modularity preserves the potentials of the two models, allowing for a sustainable programming effort to handle future evolutions in the two codes. We also tested specific model options and integration schemes to balance the numerical accuracy against the computational performance. The coupling scheme allows us to solve several processes that are not considered by each of the models alone, including light attenuation parameterizations along the water column, phytoplankton and detritus sinking, external inputs, and surface and bottom fluxes. Moreover, this new coupled hydrodynamic–biogeochemical model has been configured and tested against an idealized problem (a cyclonic gyre in a mid-latitude closed basin) and a realistic case study (central part of the Mediterranean Sea in 2006–2012). The numerical results consistently reproduce the interplay of hydrodynamics and biogeochemistry in both the idealized case and Mediterranean Sea experiments. The former reproduces correctly the alternation of surface bloom and deep chlorophyll maximum dynamics driven by the seasonal cycle of winter vertical mixing and summer stratification; the latter simulates the main basin-wide and mesoscale spatial features of the physical and biochemical variables in the Mediterranean, thus demonstrating the applicability of the new coupled model to a wide range of ocean biogeochemistry problems.


2011 ◽  
Vol 41 (9) ◽  
pp. 1659-1672 ◽  
Author(s):  
Stefano Berti ◽  
Francisco Alves Dos Santos ◽  
Guglielmo Lacorata ◽  
Angelo Vulpiani

Abstract In the framework of Monitoring by Ocean Drifters (MONDO) project, a set of Lagrangian drifters were released in proximity of the Brazil Current, the western branch of the subtropical gyre in the South Atlantic Ocean. The experimental strategy of deploying part of the buoys in clusters offers the opportunity to examine relative dispersion on a wide range of scales. Adopting a dynamical systems approach, the authors focus their attention on scale-dependent indicators, like the finite-scale Lyapunov exponent (FSLE) and the finite-scale (mean square) relative velocity (FSRV) between two drifters as a function of their separation and compare them with classic time-dependent statistical quantities like the mean-square relative displacement between two drifters and the effective diffusivity as functions of the time lag from the release. The authors find that, dependently on the given observable, the quasigeostrophic turbulence scenario is overall compatible with their data analysis, with discrepancies from the expected behavior of 2D turbulent trajectories likely to be ascribed to the nonstationary and nonhomogeneous characteristics of the flow, as well as to possible ageostrophic effects. Submesoscale features of ~O(1) km are considered to play a role, to some extent, in determining the properties of relative dispersion as well as the shape of the energy spectrum. The authors also present numerical simulations of an ocean general circulation model (OGCM) of the South Atlantic and discuss the comparison between experimental and model data about mesoscale dispersion.


2013 ◽  
Vol 43 (10) ◽  
pp. 2071-2094 ◽  
Author(s):  
Ali Belmadani ◽  
Nikolai A. Maximenko ◽  
Julian P. Mccreary ◽  
Ryo Furue ◽  
Oleg V. Melnichenko ◽  
...  

Abstract Two numerical ocean models are used to study the baroclinic response to forcing by localized wind stress curl (i.e., a wind-forced β plume, which is a circulation cell developing to the west of the source region and composed of a set of zonal jets) with implications for the Hawaiian Lee Countercurrent (HLCC): an idealized primitive equation model [Regional Ocean Modeling System (ROMS)], and a global, eddy-resolving, general circulation model [Ocean General Circulation Model for the Earth Simulator (OFES)]. In addition, theoretical ideas inferred from a linear continuously stratified model are used to interpret results. In ROMS, vertical mixing preferentially damps higher-order vertical modes. The damping thickens the plume to the west of the forcing region, weakening the near-surface zonal jets and generating deeper zonal currents. The zonal damping scale increases monotonically with the meridional forcing scale, indicating a dominant role of vertical viscosity over diffusion, a consequence of the small forcing scale. In the OFES run forced by NCEP reanalysis winds, the HLCC has a vertical structure consistent with that of idealized β plumes simulated by ROMS, once the contribution of the North Equatorial Current (NEC) has been removed. Without this filtering, a deep HLCC branch appears artificially separated from the surface branch by the large-scale intermediate-depth NEC. The surface HLCC in two different OFES runs exhibits sensitivity to the meridional wind curl scale that agrees with the dynamics of a β plume in the presence of vertical viscosity. The existence of a deep HLCC extension is also suggested by velocities of Argo floats.


2020 ◽  
Author(s):  
Zhengchen Zang ◽  
Z. George Xue ◽  
Kehui Xu ◽  
Samuel J. Bentley ◽  
Qin Chen ◽  
...  

Abstract. We introduce a sediment-induced light attenuation algorithm into the biogeochemical model of the Regional Ocean Modeling System (ROMS). A fully coupled ocean-atmospheric-sediment-biogeochemical simulation is carried out to assess the impact of sediment-induced light attenuation on primary production in the northern Gulf of Mexico during Hurricane Gustav in 2008. The new model shows a better agreement with satellite data on both the magnitude of nearshore chlorophyll concentration and the distribution of offshore bloom. When Gustav approaches, resuspended sediments shift the inner shelf ecosystem from a nutrient-limited one to light-limited. One week after Gustav’s landfall, accumulated nutrient and favorable optical environment induces a post-hurricane algal bloom in the top 20 m of water column, while the productivity in the lower column is still light-limited due to unsettled sediment. Corresponding with the elevated offshore NO3 flux (38.71 mmol N/m/s) and decreased chlorophyll flux (43.10 mg/m/s), the post-hurricane bloom in the outer shelf is resulted from the cross-shelf nutrient supply instead of the lateral dispersed chlorophyll. Sensitivity tests indicate sediment light attenuation efficiency affects primary production when sediment concentration is moderately high.


2019 ◽  
Vol 19 (3) ◽  
pp. 371-384
Author(s):  
Vu Thi Vui

This study preliminarily applies the Regional Ocean Modeling System (ROMS) in the two major monsoon seasons (Northeast and Southwest monsoons) for the South Central Vietnam sea (9–14.5oN, 105–112oE), in which the hydrodynamic and ecological modules are coupled. The results show that the plankton only develop in 200 m water on the top, concentrated mainly in the 0–70 m layer and in maximum biomass of 15–40 m layer. In the Northeast monsoon season, the plankton are concentrated mainly in the northern part and open seas of the area, while in the Southwest monsoon season, they are concentrated in the upwelling and adjacent southern areas. These results correctly reflect the basic law of the development of plankton communities in the sea area.


2016 ◽  
Author(s):  
Joao Marcos Azevedo Correia de Souza ◽  
Brian Powell

Abstract. The dynamical interaction between currents, bathymetry, waves, and estuarian outflow have significant impacts on the surf-zone. We investigate the impacts of two strategies to include the effect of surface gravity waves on an ocean circulation model of the south shore of O'ahu, Hawaii. This area provides an ideal laboratory for the development of nearshore circulation modeling systems for reef protected coastlines. We use two numerical models for circulation and waves: Regional Ocean Modeling System (ROMS) and Simulating Waves Nearshore (SWAN), respectively. The circulation model is nested within larger-scale models that capture the tidal, regional, and wind-forced circulation of the Hawaiian archipelago. Two strategies are explored for circulation modeling: forcing by the output of the wave model and online, two-way coupling of the circulation and wave models. In addition, the circulation model alone provides the reference for the circulation without the effect of the waves. These strategies are applied to two experiments: (1) typical trade-wind conditions that are frequent during summer months, and (2) the arrival of a large winter swell that wraps around the island. The results show the importance of considering the effect of the waves on the circulation and, particularly, the circulation-wave coupled processes. Both approaches show a similar nearshore circulation pattern, with the presence of an offshore current in the middle beaches of Waikiki. Although the pattern of the offshore circulation remains the same, the coupled waves and circulation produce larger significant wave heights (10 % to 20 %) and the formation of strong along- and cross-shore currents (~ 1 m s−1).


2020 ◽  
Author(s):  
Giulia Bonino ◽  
Elisa Lovecchio ◽  
Nicolas Gruber ◽  
Matthias Münnich ◽  
Simona Masina ◽  
...  

Abstract. The Canary Upwelling System (CanUS) is a productive coastal region characterized by strong seasonality and an intense offshore transport of organic carbon (Corg) to the adjacent oligotrophic offshore waters. There, the respiration of this Corg substantially modifies net community production (NCP). While this transport and the resulting coupling of the biogeochemistry between the coastal and open ocean has been well studied in the annual mean, the temporal variability, and especially its seasonality has not yet been investigated. Here, we fill this gap, and determine the seasonal variability of the offshore transport of Corg, its mesoscale component, latitudinal differences, and the underlying physical and biological drivers. To this end, we employ the Regional Ocean Modeling System (ROMS) coupled to a nutrient, phytoplankton, zooplankton, and detritus (NPZD) ecosystem model. Our results reveal the importance of the mesoscale fluxes and of the upwelling processes (coastal upwelling and Ekman pumping) in modulating the seasonal variation of the offshore Corg transport. We find that the region surrounding Cape Blanc (21° N) hosts the most intense Corg offshore flux in every season, linked to the persistent, and far reaching Cape Blanc filament. Coastal upwelling filaments dominate the seasonality of the total offshore flux up to 100 km from the coast, contributing in every season season at least 80 % to the total flux. The seasonality of the upwelling modulates the offshore Corg seasonality hundreds of km from the CanUS coast via lateral redistribution of nearshore production. North of 24.5° N, the sharp summer-fall peak of coastal upwelling results in an export of more than 30 % of the coastal Corg at the 100 km offshore due to a combination of intensified nearshore production and offshore fluxes. To the south, the less pronounced upwelling seasonality regulates an overall larger, but farther-reaching and less seasonally varying lateral flux, which exports between 60 and 90 % of the coastal production more than 100 km offshore. Overall, we show that the temporal variability of nearshore processes impacts the variability of Corg and NCP hundreds of km offshore from the CanUS coast via the offshore transport of the nearshore production.


Sign in / Sign up

Export Citation Format

Share Document