The CMEMS In Situ TAC multi-year and multi-variate products to monitor and understand the ocean variability

Author(s):  
Tanguy Szekely ◽  
Mélanie Juza ◽  
Jérôme Gourrion ◽  
Paz Rotllán-García ◽  
Sylvie Pouliquen ◽  
...  

<p>The CMEMS In Situ TAC (INSTAC) integrates <em>in situ</em> observations from various platforms, (e.g. profiling floats, gliders, drifters, saildrones, research vessels, ferryboxes, fixed stations, tides gauges, sea mammals, high-frequency radar), providing physical and biogeochemical ocean data at local, regional and global scales, with an increasing data integration from the polar and coastal regions.</p><p> </p><p>The INSTAC quality-controlled data in both delayed mode and near-real time are contributing to support the operational oceanography (e.g. model forecasting, analysis and reanalysis, satellite calibration, downstream services) and to monitor the 4-dimensional ocean at various spatial and temporal scales. The INSTAC multi-year products provide an essential information on the ocean state, variability and changes and allow addressing long-term variations (climate) analysis as well as detecting remarkable events. Hence, the INSTAC group has contributed substantially to the elaboration of the annual CMEMS Ocean State Report (OSR, <em>Von Schuckmann et al.</em>, 2016, 2018, 2019, 2020, 2021).</p><p> </p><p>A general overview of the INSTAC contributions to the CMEMS OSR is presented, highlighting its capacity to describe, analyze and understand the ocean state and variability of both physical and biogeochemical components from the sea surface to the deep ocean, from the coastal to open sea waters, from tropical to polar regions, from semi-enclosed seas to the global ocean, from short-term to long-term temporal scales. The INSTAC team contributes to the CMEMS Ocean Monitoring Indicators reporting, investigates the ocean circulation variability, analyses the impact of climate change on marine ecosystem and ocean circulation, and develops operational applications and services.</p><p> </p><p>Maintaining the current observational network, integrating new platforms, enhancing the spatial and temporal resolutions, improving methodologies and developing new metrics (e.g. quality control, data assimilation), developing new products, INSTAC will continue to serve the overall need to understand and predict the ocean state and variability, in line with the present and future scientific, societal and environmental challenges.</p>

2020 ◽  
Author(s):  
Mélanie Juza ◽  
Tanguy Szekely ◽  
Jérôme Gourrion ◽  
Inmaculada Ruiz-Parrado ◽  
Sylvie Pouliquen ◽  
...  

<p><span>CMEMS IN SITU TAC (INSTAC) collects <em>in situ</em> observations from various platforms (e.g. Argo floats, gliders, drifters, ships, fixed stations, marine mammals, high-frequency radar). It provides free, open and quality-controlled physical and biogeochemical ocean data in both delayed mode and near-real time, in support to the operational oceanography, the ocean health and the climate change. Monitoring the 4-dimensional ocean at various spatial and temporal scales, the INSTAC multi-year products provide an essential information on the ocean state, variability and changes. Hence, the INSTAC group contributes substantially to the elaboration of the annual CMEMS Ocean State Report (<em>Von Schuckmann et al.</em>, 2016, 2018, 2019, 2020), in collaboration with internal and external scientific experts, as well as with other CMEMS TACs and MFCs.</span></p><p><span>A general overview of the INSTAC contributions to the CMEMS Ocean State Report is presented, highlighting its capacity to describe, analyze and understand the ocean state and variability of both physical and biogeochemical components from the sea surface to the deep ocean, from the coastal to open sea waters at both short-term (event) and long-term temporal scales. The INSTAC team contributes to the CMEMS Ocean Monitoring Indicators (e.g. temperature, salinity, ocean heat content, water mass and heat exchange, extreme event detection), investigates the ocean circulation variability (e.g. cold and fresh blob in North Atlantic, mesoscale eddy anomaly), analyses the impacts of climate change on marine ecosystem and ocean circulation (e.g. water mass responses to climate warming, cyclones), and develops operational applications and services (pollution risk, search-and-rescue, storm and wave alerts, river discharges).</span></p>


1997 ◽  
Vol 25 ◽  
pp. 111-115 ◽  
Author(s):  
Achim Stössel

This paper investigates the long-term impact of sea ice on global climate using a global sea-ice–ocean general circulation model (OGCM). The sea-ice component involves state-of-the-art dynamics; the ocean component consists of a 3.5° × 3.5° × 11 layer primitive-equation model. Depending on the physical description of sea ice, significant changes are detected in the convective activity, in the hydrographic properties and in the thermohaline circulation of the ocean model. Most of these changes originate in the Southern Ocean, emphasizing the crucial role of sea ice in this marginally stably stratified region of the world's oceans. Specifically, if the effect of brine release is neglected, the deep layers of the Southern Ocean warm up considerably; this is associated with a weakening of the Southern Hemisphere overturning cell. The removal of the commonly used “salinity enhancement” leads to a similar effect. The deep-ocean salinity is almost unaffected in both experiments. Introducing explicit new-ice thickness growth in partially ice-covered gridcells leads to a substantial increase in convective activity, especially in the Southern Ocean, with a concomitant significant cooling and salinification of the deep ocean. Possible mechanisms for the resulting interactions between sea-ice processes and deep-ocean characteristics are suggested.


2021 ◽  
Author(s):  
Thomas Rackow ◽  
Nils Wedi ◽  
Kristian Mogensen ◽  
Peter Dueben ◽  
Helge F. Goessling ◽  
...  

<p>This presentation will give an overview about an ongoing collaboration between the European Centre for Medium-Range Weather Forecasts (ECMWF) and the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI). Our recent development is a single-executable coupled configuration of the Integrated Forecasting System (IFS) and the Finite Volume Sea Ice-Ocean Model, FESOM2. This configuration is set up to participate in the DYAMOND project alongside ECMWF’s default IFS-NEMO configuration. IFS-FESOM2 and IFS-NEMO are tentative models to generate “Digital Twin” storm-scale, coupled simulations as envisioned in the European Destination Earth (DestinE) and Next Generation Earth Modelling Systems (NextGEMS) projects.</p><p>FESOM2 has a novel dynamical core that supports multi-resolution triangular grids. The model and its predecessor FESOM1 have been used in many studies over the last decade, with a focus on the role of the polar regions in global ocean circulation. The impact of eddy-permitting and locally eddy-resolving resolution has been addressed in CMIP6 and HighResMIP simulations as part of the AWI-CM-1-1 global climate model, while simulations with up to 1km resolution in the Arctic Ocean have been performed in stand-alone mode.</p><p>Initially, two coupled IFS-FESOM2 configurations have been tested: A coarse-resolution setup with a nominal 1° ocean, and a DYAMOND-II configuration with 0.25° ocean and IFS at 4.5km global resolution on average. For the latter configuration, FESOM2 is mimicking the “ORCA025” tri-polar curvilinear grid of the NEMO model, whose grid boxes have been split into triangles. Initialisation is from ECMWF’s analysis for IFS and NEMO, and from an ERA5-forced ocean spin-up for FESOM2. We discuss technical challenges with respect to the hybrid OpenMP and MPI parallelization in a single-executable context, describe a novel strategy for resource-efficient writing of model output, and summarise future applications such as exploring the impact of flexible FESOM2 grid configurations on the atmosphere - with ocean simulations that resolve leads in sea ice and ocean eddies almost everywhere.</p>


1997 ◽  
Vol 25 ◽  
pp. 111-115 ◽  
Author(s):  
Achim Stössel

This paper investigates the long-term impact of sea ice on global climate using a global sea-ice–ocean general circulation model (OGCM). The sea-ice component involves state-of-the-art dynamics; the ocean component consists of a 3.5° × 3.5° × 11 layer primitive-equation model. Depending on the physical description of sea ice, significant changes are detected in the convective activity, in the hydrographic properties and in the thermohaline circulation of the ocean model. Most of these changes originate in the Southern Ocean, emphasizing the crucial role of sea ice in this marginally stably stratified region of the world's oceans. Specifically, if the effect of brine release is neglected, the deep layers of the Southern Ocean warm up considerably; this is associated with a weakening of the Southern Hemisphere overturning cell. The removal of the commonly used “salinity enhancement” leads to a similar effect. The deep-ocean salinity is almost unaffected in both experiments. Introducing explicit new-ice thickness growth in partially ice-covered gridcells leads to a substantial increase in convective activity, especially in the Southern Ocean, with a concomitant significant cooling and salinification of the deep ocean. Possible mechanisms for the resulting interactions between sea-ice processes and deep-ocean characteristics are suggested.


2019 ◽  
Vol 46 (1) ◽  
pp. 58-69
Author(s):  
V. L. Dorofeev ◽  
L. I. Sukhikh

Herein, we present a simulation of the dynamics of Black Sea ecosystems using a three-dimensional interdisciplinary model that assimilates satellite color scanner measurements. Calculations were performed for the fifteen years from 1998 and a set of 3-d biogeochemical fields of the Black Sea were generated on a regular grid with a discreteness time of 1 day. Analyses of core biogeochemical parameters of the marine ecosystem were then performed. The qualities of received fields were evaluated using comparisons with existing data from in situ measurements.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Caixia Shao ◽  
Lili Xuan ◽  
Yingzhi Cao ◽  
Xiaojian Cui ◽  
Siyu Gao

A regional ocean reanalysis system of China coastal waters and adjacent seas, called CORA (China ocean reanalysis), has been recently developed at the National Marine Data and Information Service (NMDIS). In this study, based on CORA, the impact of Argo profiles on the regional reanalysis is evaluated using a twin-experiment approach. It is found that, by assimilating Argo observations, the reanalysis quality is much improved: the root mean square (RMS) error of temperature and salinity can be further reduced by about 10% and the RMS error of current can be further reduced by 18%, compared to the case only assimilating conventional in situ temperature and salinity observations. Consistent with the unique feature of Argo observations, the temperature is improved in all levels and the largest improvement of salinity happens in the deep ocean. Argo profile data have a significant impact on the regional ocean reanalysis through improvements of both hydrographic and dynamic fields.


2021 ◽  
Author(s):  
Damien Desbruyères ◽  
Léon Chafik ◽  
Guillaume Maze

<p>The Subpolar North Atlantic (SPNA) is known for rapid reversals of decadal temperature trends, with ramifications encompassing the large-scale meridional overturning and gyre circulations, Arctic heat and mass balances, or extreme continental weather. Here, we combine datasets derived from sustained ocean observing systems (satellite and in situ), and idealized observation-based modelling (advection-diffusion of a passive tracer) and machine learning technique (ocean profile clustering) to document and explain the most-recent and ongoing cooling-to-warming transition of the SPNA. Following a gradual cooling of the region that was persisting since 2006, a surface-intensified and large-scale warming sharply emerged in 2016 following an ocean circulation shift that enhanced the northeastward penetration of warm and saline waters from the western subtropics. Driving mechanisms and ramification for deep ocean heat uptake will be discussed.</p>


2020 ◽  
Vol 12 (5) ◽  
pp. 840 ◽  
Author(s):  
Dabin Lee ◽  
SeungHyun Son ◽  
HuiTae Joo ◽  
Kwanwoo Kim ◽  
Myung Joon Kim ◽  
...  

In recent years, the change of marine environment due to climate change and declining primary productivity have been big concerns in the East/Japan Sea, Korea. However, the main causes for the recent changes are still not revealed clearly. The particulate organic carbon (POC) to chlorophyll-a (chl-a) ratio (POC:chl-a) could be a useful indicator for ecological and physiological conditions of phytoplankton communities and thus help us to understand the recent reduction of primary productivity in the East/Japan Sea. To derive the POC in the East/Japan Sea from a satellite dataset, the new regional POC algorithm was empirically derived with in-situ measured POC concentrations. A strong positive linear relationship (R2 = 0.6579) was observed between the estimated and in-situ measured POC concentrations. Our new POC algorithm proved a better performance in the East/Japan Sea compared to the previous one for the global ocean. Based on the new algorithm, long-term POC:chl-a ratios were obtained in the entire East/Japan Sea from 2003 to 2018. The POC:chl-a showed a strong seasonal variability in the East/Japan Sea. The spring and fall blooms of phytoplankton mainly driven by the growth of large diatoms seem to be a major factor for the seasonal variability in the POC:chl-a. Our new regional POC algorithm modified for the East/Japan Sea could potentially contribute to long-term monitoring for the climate-associated ecosystem changes in the East/Japan Sea. Although the new regional POC algorithm shows a good correspondence with in-situ observed POC concentrations, the algorithm should be further improved with continuous field surveys.


2018 ◽  
Author(s):  
Benoît Tranchant ◽  
Elisabeth Remy ◽  
Eric Greiner ◽  
Olivier Legalloudec

Abstract. Monitoring Sea Surface Salinity (SSS) is important for understanding and forecasting the ocean circulation. It is even crucial in the context of the acceleration of the water cycle. Until recently, SSS was one of the less observed essential ocean variables. Only sparse in situ observations, most often closer to 5 meters deep than the surface, were available to estimate the SSS. The recent satellite missions of ESA's SMOS, NASA's Aquarius, and now SMAP have made possible for the first time to measure SSS from space. The SSS drivers can be quite different than the temperature ones. The model SSS can suffer from significant errors coming not only from the ocean dynamical model but also the atmospheric precipitation and evaporation as well as ice melting and river runoff. Satellite SSS can bring a valuable additional constraint to control the model salinity. In the framework of the SMOS Nino 2015 ESA project (https://www.godae-oceanview.org/projects/smos-nino15/), the impact of satellite SSS data assimilation is assessed with the Met Office and Mercator Ocean global ocean analysis and forecasting systems with a focus on the Tropical Pacific region. This article presents the analysis of an Observing System Experiment (OSE) conducted with the 1/4° resolution Mercator Ocean analysis and forecasting system. SSS data assimilation constrains the model SSS to be closer to the observations in a coherent way with the other data sets already routinely assimilated in an operational context. Globally, the SMOS SSS assimilation has a positive impact in salinity over the top 30 meters. Comparisons to independent data sets show a small but positive impact. The sea surface height (SSH) has also been impacted by implying a reinforcement of TIWs during the El-Niño 2015/16 event. Finally, this study helped us to progress in the understanding of the biases and errors that can degrade the SMOS SSS performance.


1990 ◽  
Vol 81 (4) ◽  
pp. 315-325 ◽  
Author(s):  
Barry Saltzman ◽  
Kirk A. Maasch

ABSTRACTThe theory of the Quaternary climate will be incomplete unless it is embedded in a more general theory for the fuller Cenozoic that can accommodate the onset of the ice-age fluctuations. Here we construct a simple mathematical model for the late Cenozoic climatic changes based on the hypothesis that forced and free variations of the concentration of atmospheric greenhouse gases (notably CO2) coupled with changes in the global ocean state and ice mass, under the additional influence or earth-orbital forcing, are primary determinants of the climatic state over this long period. Our goal is to illustrate how a single model governing both very long-term variations and higher frequency oscillatory variations in the Pleistocene can be formulated with relatively few adjustable parameters. Although the details of this model are speculative, and other factors neglected here are undoubtedly of importance, it is hoped that the formalism described can provide a basis for developing a comprehensive theory and systematically extending and improving it. According to our model the major near-100 ka period ice-age oscillations of the Pleistocene were caused by the downdraw of atmospheric CO2 (possibly a result of weathering of rapidly uplifted topography) to low enough levels for the ‘slow climatic system’, including glacial ice and the deep ocean state, to become unstable.


Sign in / Sign up

Export Citation Format

Share Document