Multi-Timescale LSTM for Rainfall–Runoff Forecasting

Author(s):  
Martin Gauch ◽  
Frederik Kratzert ◽  
Grey Nearing ◽  
Jimmy Lin ◽  
Sepp Hochreiter ◽  
...  

<p>Rainfall–runoff predictions are generally evaluated on reanalysis datasets such as the DayMet, Maurer, or NLDAS forcings in the CAMELS dataset. While useful for benchmarking, this does not fully reflect real-world applications. There, meteorological information is much coarser, and fine-grained predictions are at best available until the present. For any prediction of future discharge, we must rely on forecasts, which introduce an additional layer of uncertainty. Thus, the model inputs need to switch from past data to forecast data at some point, which raises several questions: How can we design models that support this transition? How can we design tests that evaluate the performance of the model? Aggravating the challenge, the past and future data products may include different variables or have different temporal resolutions.</p><p>We demonstrate how to seamlessly integrate past and future meteorological data in one deep learning model, using the recently proposed Multi-Timescale LSTM (MTS-LSTM, [1]). MTS-LSTMs are based on LSTMs but can generate rainfall–runoff predictions at multiple timescales more efficiently. One MTS-LSTM consists of several LSTMs that are organized in a branched structure. Each LSTM branch processes a part of the input time series at a certain temporal resolution. Then it passes its states to the next LSTM branch—thus sharing information across branches. We generalize this layout to handovers across data products (rather than just timescales) through an additional branch. This way, we can integrate past and future data in one prediction pipeline, yielding more accurate predictions.</p><p> </p><p>[1] M. Gauch, F. Kratzert, D. Klotz, G. Nearing, J. Lin, and S. Hochreiter. “Rainfall–Runoff Prediction at Multiple Timescales with a Single Long Short-Term Memory Network.” Hydrology and Earth System Sciences Discussions, in review, 2020.</p>

Author(s):  
Yufei Li ◽  
Xiaoyong Ma ◽  
Xiangyu Zhou ◽  
Pengzhen Cheng ◽  
Kai He ◽  
...  

Abstract Motivation Bio-entity Coreference Resolution focuses on identifying the coreferential links in biomedical texts, which is crucial to complete bio-events’ attributes and interconnect events into bio-networks. Previously, as one of the most powerful tools, deep neural network-based general domain systems are applied to the biomedical domain with domain-specific information integration. However, such methods may raise much noise due to its insufficiency of combining context and complex domain-specific information. Results In this paper, we explore how to leverage the external knowledge base in a fine-grained way to better resolve coreference by introducing a knowledge-enhanced Long Short Term Memory network (LSTM), which is more flexible to encode the knowledge information inside the LSTM. Moreover, we further propose a knowledge attention module to extract informative knowledge effectively based on contexts. The experimental results on the BioNLP and CRAFT datasets achieve state-of-the-art performance, with a gain of 7.5 F1 on BioNLP and 10.6 F1 on CRAFT. Additional experiments also demonstrate superior performance on the cross-sentence coreferences. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 35 (4) ◽  
pp. 1167-1181
Author(s):  
Yun Bai ◽  
Nejc Bezak ◽  
Bo Zeng ◽  
Chuan Li ◽  
Klaudija Sapač ◽  
...  

Author(s):  
H. Fan ◽  
M. Yang ◽  
F. Xiao ◽  
K. Zhao

Abstract. Over the past few decades, air pollution has caused serious damage on public health, thus making accurate predictions of PM2.5 crucial. Due to the transportation of air pollutants among areas, the PM2.5 concentration is strongly spatiotemporal correlated. However, the distribution of air pollution monitoring sites is not even, making the spatiotemporal correlation between the central site and surrounding sites varies with different density of sites, and this was neglected by most existing methods. To tackle this problem, this study proposed a weighted long short-term memory neural network extended model (WLSTME), which addressed the issue that how to consider the effect of the density of sites and wind condition on the spatiotemporal correlation of air pollution concentration. First, several the nearest surrounding sites were chosen as the neighbour sites to the central station, and their distance as well as their air pollution concentration and wind condition were input to multi-layer perception (MLP) to generate weighted historical PM2.5 time series data. Second, historical PM2.5 concentration of the central site and weighted PM2.5 series data of neighbour sites were input into LSTM to address spatiotemporal dependency simultaneously and extract spatiotemporal features. Finally, another MLP was utilized to integrate spatiotemporal features extracted above with the meteorological data of central site to generate the forecasts future PM_2.5 concentration of the central site. Daily PM_2.5 concentration and meteorological data on Beijing–Tianjin–Hebei from 2015 to 2017 were collected to train models and evaluate the performance. Experimental results with 3 other methods showed that the proposed WLSTME model has the lowest RMSE (40.67) and MAE (26.10) and the highest p (0.59). This finding confirms that WLSTME can significantly improve the PM2.5 prediction accuracy.


2020 ◽  
Vol 589 ◽  
pp. 125359
Author(s):  
Xi Chen ◽  
Jiaxu Huang ◽  
Zhen Han ◽  
Hongkai Gao ◽  
Min Liu ◽  
...  

Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1001 ◽  
Author(s):  
Jingang Liu ◽  
Chunhe Xia ◽  
Haihua Yan ◽  
Wenjing Xu

Named entity recognition (NER) is a basic but crucial task in the field of natural language processing (NLP) and big data analysis. The recognition of named entities based on Chinese is more complicated and difficult than English, which makes the task of NER in Chinese more challenging. In particular, fine-grained named entity recognition is more challenging than traditional named entity recognition tasks, mainly because fine-grained tasks have higher requirements for the ability of automatic feature extraction and information representation of deep neural models. In this paper, we propose an innovative neural network model named En2BiLSTM-CRF to improve the effect of fine-grained Chinese entity recognition tasks. This proposed model including the initial encoding layer, the enhanced encoding layer, and the decoding layer combines the advantages of pre-training model encoding, dual bidirectional long short-term memory (BiLSTM) networks, and a residual connection mechanism. Hence, it can encode information multiple times and extract contextual features hierarchically. We conducted sufficient experiments on two representative datasets using multiple important metrics and compared them with other advanced baselines. We present promising results showing that our proposed En2BiLSTM-CRF has better performance as well as better generalization ability in both fine-grained and coarse-grained Chinese entity recognition tasks.


2020 ◽  
Vol 22 (4) ◽  
pp. 900-915 ◽  
Author(s):  
Xiao-ying Bi ◽  
Bo Li ◽  
Wen-long Lu ◽  
Xin-zhi Zhou

Abstract Accurate daily runoff prediction plays an important role in the management and utilization of water resources. In order to improve the accuracy of prediction, this paper proposes a deep neural network (CAGANet) composed of a convolutional layer, an attention mechanism, a gated recurrent unit (GRU) neural network, and an autoregressive (AR) model. Given that the daily runoff sequence is abrupt and unstable, it is difficult for a single model and combined model to obtain high-precision daily runoff predictions directly. Therefore, this paper uses a linear interpolation method to enhance the stability of hydrological data and apply the augmented data to the CAGANet model, the support vector machine (SVM) model, the long short-term memory (LSTM) neural network and the attention-mechanism-based LSTM model (AM-LSTM). The comparison results show that among the four models based on data augmentation, the CAGANet model proposed in this paper has the best prediction accuracy. Its Nash–Sutcliffe efficiency can reach 0.993. Therefore, the CAGANet model based on data augmentation is a feasible daily runoff forecasting scheme.


2021 ◽  
Vol 27 (4) ◽  
pp. 230-245
Author(s):  
Chih-Chiang Wei

Strong wind during extreme weather conditions (e.g., strong winds during typhoons) is one of the natural factors that cause the collapse of frame-type scaffolds used in façade work. This study developed an alert system for use in determining whether the scaffold structure could withstand the stress of the wind force. Conceptually, the scaffolds collapsed by the warning system developed in the study contains three modules. The first module involves the establishment of wind velocity prediction models. This study employed various deep learning and machine learning techniques, namely deep neural networks, long short-term memory neural networks, support vector regressions, random forest, and k-nearest neighbors. Then, the second module contains the analysis of wind force on the scaffolds. The third module involves the development of the scaffold collapse evaluation approach. The study area was Taichung City, Taiwan. This study collected meteorological data from the ground stations from 2012 to 2019. Results revealed that the system successfully predicted the possible collapse time for scaffolds within 1 to 6 h, and effectively issued a warning time. Overall, the warning system can provide practical warning information related to the destruction of scaffolds to construction teams in need of the information to reduce the damage risk.


Author(s):  
Vignesh CK

This paper deals with the techniques of attempting to calculate the future value of a company stock or any other financial instrument which is being traded in a stock exchange. This prediction plays a great role in many financing and investing decisions. This calculation can be done by Machine learning by training a model to identify the trend from past data in order to predict the future. The main topic of study here will be the comparative analysis of the SVM and LTSM algorithms. KEYWORDS: Machine learning, Stock price, Stock market, Support vector machine, neural network, long short term memory.


2020 ◽  
Author(s):  
Victor Aquiles Alencar ◽  
Lucas Ribeiro Pessamilio ◽  
Felipe Rooke da Silva ◽  
Heder Soares Bernardino ◽  
Alex Borges Vieira

Abstract Car-sharing is an alternative to urban mobility that has been widely adopted. However, this approach is prone to several problems, such as fleet imbalance, due to the variance of the daily demand in large urban centers. In this work, we apply two time series techniques, namely, Long Short-Term Memory (LSTM) and Prophet, to infer the demand for three real car-sharing services. We also apply several state-of-the-art models on free-floating data in order to get a better understanding of what works best for this type of data. In addition to historical data, we also use climatic attributes in LSTM applications. As a result, the addition of meteorological data improved the model’s performance, especially on Evo: an average Mean Absolute Error (MAE) of approximately 61.13 travels was obtained with the demand data on Evo, while MAE equals 32.72 travels was observed when adding the climatic data, the other datasets also improved but none other improved this much. For the free-floating data test, we got the Boosting Algorithms (XGBoost, Catboost, and LightGBM) got the best performance short term, the worst one has an improvement of around 22% of MAE over the next best-ranked (Prophet). Meanwhile in the long term Prophet got the best MAE result, around 22.5% better than the second-best (LSTM).


10.29007/c1sf ◽  
2018 ◽  
Author(s):  
Arnab Bandyopadhyay ◽  
Grace Nengzouzam ◽  
W. Rahul Singh ◽  
Nemtinkim Hangsing ◽  
Aditi Bhadra

Meteorological data such as precipitation and temperature are important for hydrological modelling. In areas where there is sparse observational data, an alternate means for obtaining information for different impact modelling and monitoring activities is provided by reanalysis products. Evaluating their behaviour is crucial to know their uncertainties. Therefore, we evaluated two reanalyses gridded data products, viz., Coordinated Regional Climate Downscaling Experiment (CORDEX) and National Centers for Environment Predictors and GCM (General Circulation Model) predictor variables (NCEP); two station based gridded data products, viz., Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE) and India Meteorological Department (IMD) gridded data; one satellite based gridded data product i.e., Tropical Rainfall Measuring Mission (TRMM); and one merged data product, i.e., Global Precipitation Climatology Project (GPCP). These products were compared with IMD observed station data for 1971 to 2010 to evaluate their behaviour in terms of fitness by using statistical parameters such as NSE, CRM and R2. APHRODITE and TRMM gridded data showed overall good results for precipitation followed by IMD, GPCP, CORDEX and NCEP. APHRODITE also showed good agreement for mean temperature. CORDEX and NCEP gave a promising result for minimum and maximum temperatures with NCEP better than CORDEX.


Sign in / Sign up

Export Citation Format

Share Document