scholarly journals Introduction of a simple formula for estimating approximate intensity-duration-frequency curves from daily rain gauge data

2021 ◽  
Author(s):  
Rasmus Benestad ◽  
Julia Lutz ◽  
Anita Verpe Dyrrdal ◽  
Jan Erik Haugen ◽  
Kajsa M. Parding ◽  
...  

<p>A simple formula for estimating approximate values of return levels for sub-daily rainfall is presented. It was derived from a combination of simple mathematical principles, approximations and fitted to 10-year return levels taken from intensity-duration-frequency (IDF) curves representing 14 sites in Oslo. The formula has subsequently been evaluated against IDF curves from independent sites elsewhere in Norway. Since it only needs 24 h rain gauge data as input, it can provide approximate estimates for the IDF curves used to describe sub-daily rainfall return levels. In this respect, it can be considered as a means of downscaling regarding the timescale, given an approximate power-law dependency between temporal scales. One clear benefit of this framework is that observational data is far more abundant for 24 hr rain gauge records than for sub-daily measurements. Furthermore, it does not assume stationarity and is well-suited for projecting IDF curves for a future climate. This method also provides a framework that strengthens the connection between climatology and meteorology to hydrology, and can be applied to risk management in terms of flash flooding. The proposed formula can also serve as a 'yardstick' to study how different meteorological phenomena with different timescales influence the local precipitation, such as convection, weather fronts, cyclones, atmospheric rivers, or orographic rainfall. An interesting question is whether the slopes of the IDF curves change as a consequence of climate change and if it is possible to predict how they change. One way to address this question is to apply the framework to simulations by convective-permitting regional climate models that offer a complete representation of both sub-daily and daily precipitation over time and space. </p>

Author(s):  
Novi Rahmawati ◽  
Kisworo Rahayu ◽  
Sukma Tri Yuliasari

AbstractEvaluation of the performance of daily satellite-based rainfall (CMORPH, CHIRPS, GPM IMERG, and TRMM) was done to obtain applicable satellite rainfall estimates in the groundwater basin of the Merapi Aquifer System (MAS). Performance of satellite data was assessed by applying descriptive statistics, categorical statistics, and bias decomposition on the basis of daily rainfall intensity classification. This classification is possible to measure the performance of daily satellite-based rainfall in much detail. CM (CMORPH) has larger underestimation compared to other satellite-based rainfall assessments. This satellite-based rainfall also mostly has the largest RMSE, while CHR (CHIRPS) has the lowest. CM has a good performance to detect no rain, while IMR (GPM IMERG) has the worst performance. IMR and CHR have a good performance to detect light and moderate rain. Both of them have larger H frequencies and lower MB values compared to other satellite products. CHR mostly has a good performance compared to TR (TRMM), especially on wet periods. CM, IMR, and TR mostly have a good performance on dry periods, while CHR on wet periods. CM mostly has the largest MB and lowest AHB values. CM and CHR have better accuracy to estimate rain amount compared to IMR and TR. All in all, all 4 satellite-based rainfall assessments have large discrepancy compared with rain gauge data along mountain range where orographic rainfall usually occurs in wet periods. Hence, it is recommended to evaluate satellite-based rainfall with time series of streamflow simulation in hydrological modeling framework by merging rain gauge data with more than one satellite-based rainfall than to merge both IMR and TR together.


2021 ◽  
Author(s):  
Novi Rahmawati ◽  
Kisworo Rahayu ◽  
Sukma Tri Yuliasari

Abstract Evaluation of the performance of daily satellite-based rainfall (CMORPH, CHIRPS, GPM IMERG, and TRMM) was done to obtain applicable satellite rainfall estimates in groundwater basin of Merapi Aquifer System (MAS). Performance of satellite data was assessed by applying descriptive statistics, categorical statistics, and bias decomposition on the basis of daily rainfall intensity classification. This classification is possible to measure the performance of daily satellite-based rainfall in much detail.CM (CMORPH) has larger underestimation compared to other satellite-based rainfall. This satellite-based rainfall also mostly has the largest RMSE, while CHR (CHIRPS) is the lowest. CM has a good performance to detect no rain, while IMR (GPM-IMERG) has the worst performance. IMR and CHR have a good performance to detect light and moderate rain. Both of them have larger H frequencies and lower MB values compared to other satellite products. CHR mostly has a good performance compared to TR (TRMM) especially on wet periods. CM, IMR, and TR mostly have a good performance on dry periods, while CHR on wet periods. CM mostly has the largest MB and lowest AHB values. CM and CHR have better accuracy to estimate rain amount compared to IMR and TR. All in all, all 4 satellite-based rainfall has large discrepancy compared with rain gauge data along mountain range where orographic rainfall usually occurs in wet periods. Hence, it is recommended to evaluate satellite-based rainfall with time series of streamflow simulation in hydrological modeling framework by merging rain gauge data with more than one satellite-based rainfall except to merge both IMR and TR together.


2007 ◽  
Vol 8 (6) ◽  
pp. 1204-1224 ◽  
Author(s):  
J. M. Schuurmans ◽  
M. F. P. Bierkens ◽  
E. J. Pebesma ◽  
R. Uijlenhoet

Abstract This study investigates the added value of operational radar with respect to rain gauges in obtaining high-resolution daily rainfall fields as required in distributed hydrological modeling. To this end data from the Netherlands operational national rain gauge network (330 gauges nationwide) is combined with an experimental network (30 gauges within 225 km2). Based on 74 selected rainfall events (March–October 2004) the spatial variability of daily rainfall is investigated at three spatial extents: small (225 km2), medium (10 000 km2), and large (82 875 km2). From this analysis it is shown that semivariograms show no clear dependence on season. Predictions of point rainfall are performed for all three extents using three different geostatistical methods: (i) ordinary kriging (OK; rain gauge data only), (ii) kriging with external drift (KED), and (iii) ordinary collocated cokriging (OCCK), with the latter two using both rain gauge data and range-corrected daily radar composites—a standard operational radar product from the Royal Netherlands Meteorological Institute (KNMI). The focus here is on automatic prediction. For the small extent, rain gauge data alone perform better than radar, while for larger extents with lower gauge densities, radar performs overall better than rain gauge data alone (OK). Methods using both radar and rain gauge data (KED and OCCK) prove to be more accurate than using either rain gauge data alone (OK) or radar, in particular, for larger extents. The added value of radar is positively related to the correlation between radar and rain gauge data. Using a pooled semivariogram is almost as good as using event-based semivariograms, which is convenient if the prediction is to be automated. An interesting result is that the pooled semivariograms perform better in terms of estimating the prediction error (kriging variance) especially for the small and medium extent, where the number of data points to estimate semivariograms is small and event-based semivariograms are rather unstable.


2010 ◽  
Vol 4 (1) ◽  
pp. 12-23 ◽  
Author(s):  
Md. Nazrul Islam ◽  
Someshwar Das ◽  
Hiroshi Uyeda

In this study rainfall is calculated from Tropical Rainfall Measuring Mission (TRMM) Version 6 (V6) 3B42 datasets and calibrated with reference to the observed daily rainfall by rain-gauge collected at 15 locations over Nepal during 1998-2007. In monthly, seasonal and annual scales TRMM estimated rainfalls follow the similar distribution of historical patterns obtained from the rain-gauge data. Rainfall is large in the Southern parts of the country, especially in the Central Nepal. Day-to-day rainfall comparison shows that TRMM derived trend is very similar to the observed data but TRMM usually underestimates rainfall on many days with some exceptions of overestimation on some days. The correlation coefficient of rainfalls between TRMM and rain-gauge data is obtained about 0.71. TRMM can measure about 65.39% of surface rainfall in Nepal. After using calibration factors obtained through regression expression the TRMM estimated rainfall over Nepal becomes about 99.91% of observed data. TRMM detection of rainy days is poor over Nepal; it can approximately detect, under-detect and over-detect by 19%, 72% and 9% of stations respectively. False alarm rate, probability of detection, threat score and skill score are calculated as 0.30, 0.68, 0.53 and 0.55 respectively. Finally, TRMM data can be utilized in measuring mountainous rainfall over Nepal but exact amount of rainfall has to be calculated with the help of adjustment factors obtained through calibration procedure. This preliminary work is the preparation of utilization of Global Precipitation Measurement (GPM) data to be commencing in 2013.


2012 ◽  
Vol 51 (3) ◽  
pp. 429-448 ◽  
Author(s):  
Gilles Molinié ◽  
Davide Ceresetti ◽  
Sandrine Anquetin ◽  
Jean Dominique Creutin ◽  
Brice Boudevillain

AbstractThis paper presents an analysis of the rainfall regime of a Mediterranean mountainous region of southeastern France. The rainfall regime is studied on temporal scales from hourly to yearly using daily and hourly rain gauge data of 43 and 16 years, respectively. The domain is 200 × 200 km2 with spatial resolution of hourly and daily rain gauges of about 8 and 5 km, respectively. On average, yearly rainfall increases from about 0.5 m yr−1 in the large river plain close to the Mediterranean Sea to up to 2 m yr−1 over the surrounding mountain ridges. The seasonal distribution is also uneven: one-third of the cumulative rainfall occurs during the autumn season and one-fourth during the spring. At finer time scales, rainfall is studied in terms of rain–no-rain intermittency and nonzero intensity. The monthly intermittency (proportion of dry days per month) and the daily intermittency (proportion of dry hours per day) is fairly well correlated with the relief. The higher the rain gauges are, the lower the monthly and daily intermittencies are. The hourly and daily rainfall intensities are analyzed in terms of seasonal variability, diurnal cycle, and spatial pattern. The difference between regular and heavy-rainfall event is depicted by using both central parameters and maximum values of intensity distributions. The relationship between rain gauge altitudes and rainfall intensity is grossly inverted relative to intermittency and is also far more complex. The spatial and temporal rainfall patterns depicted from rain gauge data are discussed in the light of known meteorological processes affecting the study region.


2019 ◽  
Vol 19 (2) ◽  
pp. 421-440 ◽  
Author(s):  
Alex J. Cannon ◽  
Silvia Innocenti

Abstract. Convection-permitting climate models have been recommended for use in projecting future changes in local-scale, short-duration rainfall extremes that are of the greatest relevance to engineering and infrastructure design, e.g., as commonly summarized in intensity–duration–frequency (IDF) curves. Based on thermodynamic arguments, it is expected that rainfall extremes will become more intense in the future. Recent evidence also suggests that shorter-duration extremes may intensify more than longer durations and that changes may depend on event rarity. Based on these general trends, will IDF curves shift upward and steepen under global warming? Will long-return-period extremes experience greater intensification than more common events? Projected changes in IDF curve characteristics are assessed based on sub-daily and daily outputs from historical and late 21st century pseudo-global-warming convection-permitting climate model simulations over North America. To make more efficient use of the short model integrations, a parsimonious generalized extreme value simple scaling (GEVSS) model is used to estimate historical and future IDF curves (1 to 24 h durations). Simulated historical sub-daily rainfall extremes are first evaluated against in situ observations and compared with two high-resolution observationally constrained gridded products. The climate model performs well, matching or exceeding performance of the gridded datasets. Next, inferences about future changes in GEVSS parameters are made using a Bayesian false discovery rate approach. Large portions of the domain experience significant increases in GEVSS location (>99 % of grid points), scale (>88 %), and scaling exponent (>39 %) parameters, whereas almost no significant decreases are projected to occur (<1 %, <5 %, and <5 % respectively). The result is that IDF curves tend to shift upward (increases in location and scale), and, with the exception of the eastern US, steepen (increases in scaling exponent), which leads to the largest increases in return levels for short-duration extremes. The projected increase in the GEVSS scaling exponent calls into question stationarity assumptions that form the basis for existing IDF curve projections that rely exclusively on simulations at the daily timescale. When changes in return levels are scaled according to local temperature change, median scaling rates, e.g., for the 10-year return level, are consistent with the Clausius–Clapeyron (CC) relation at 1 to 6 h durations, with sub-CC scaling at longer durations and modest super-CC scaling at sub-hourly durations. Further, spatially coherent but small increases in dispersion – the ratio of scale and location parameters – of the GEVSS distribution are found over more than half of the domain, providing some evidence for return period dependence of future changes in extreme rainfall.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1661 ◽  
Author(s):  
Mohd. Rizaludin Mahmud ◽  
Aina Afifah Mohd Yusof ◽  
Mohd Nadzri Mohd Reba ◽  
Mazlan Hashim

In this study, half-hourly Global Precipitation Mission (GPM) satellite precipitation data were downscaled to produce high-resolution daily rainfall data for tropical coastal micro-watersheds (100–1000 ha) without gauges or with rainfall data conflicts. Currently, daily-scale satellite rainfall downscaling techniques rely on rain gauge data as corrective and controlling factors, making them impractical for ungauged watersheds or watersheds with rainfall data conflicts. Therefore, we used high-resolution local orographic and vertical velocity data as proxies to downscale half-hourly GPM precipitation data (0.1°) to high-resolution daily rainfall data (0.02°). The overall quality of the downscaled product was similar to or better than the quality of the raw GPM data. The downscaled rainfall dataset improved the accuracy of rainfall estimates on the ground, with lower error relative to measured rain gauge data. The average error was reduced from 41 to 27 mm/d and from 16 to 12 mm/d during the wet and dry seasons, respectively. Estimates of localized rainfall patterns were improved from 38% to 73%. The results of this study will be useful for production of high-resolution satellite precipitation data in ungauged tropical micro-watersheds.


2019 ◽  
Vol 20 (12) ◽  
pp. 2347-2365 ◽  
Author(s):  
Ali Jozaghi ◽  
Mohammad Nabatian ◽  
Seongjin Noh ◽  
Dong-Jun Seo ◽  
Lin Tang ◽  
...  

Abstract We describe and evaluate adaptive conditional bias–penalized cokriging (CBPCK) for improved multisensor precipitation estimation using rain gauge data and remotely sensed quantitative precipitation estimates (QPE). The remotely sensed QPEs used are radar-only and radar–satellite-fused estimates. For comparative evaluation, true validation is carried out over the continental United States (CONUS) for 13–30 September 2015 and 7–9 October 2016. The hourly gauge data, radar-only QPE, and satellite QPE used are from the Hydrometeorological Automated Data System, Multi-Radar Multi-Sensor System, and Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR), respectively. For radar–satellite fusion, conditional bias–penalized Fisher estimation is used. The reference merging technique compared is ordinary cokriging (OCK) used in the National Weather Service Multisensor Precipitation Estimator. It is shown that, beyond the reduction due to mean field bias (MFB) correction, both OCK and adaptive CBPCK additionally reduce the unconditional root-mean-square error (RMSE) of radar-only QPE by 9%–16% over the CONUS for the two periods, and that adaptive CBPCK is superior to OCK for estimation of hourly amounts exceeding 1 mm. When fused with the MFB-corrected radar QPE, the MFB-corrected SCaMPR QPE for September 2015 reduces the unconditional RMSE of the MFB-corrected radar by 4% and 6% over the entire and western half of the CONUS, respectively, but is inferior to the MFB-corrected radar for estimation of hourly amounts exceeding 7 mm. Adaptive CBPCK should hence be favored over OCK for estimation of significant amounts of precipitation despite larger computational cost, and the SCaMPR QPE should be used selectively in multisensor QPE.


Sign in / Sign up

Export Citation Format

Share Document