scholarly journals Virtual European Solar & Planetary Access (VESPA): Progress and prospects

2020 ◽  
Author(s):  
Stéphane Erard ◽  
Baptiste Cecconi ◽  
Pierre Le Sidaner ◽  
Angelo Pio Rossi ◽  
Carlos Brandt ◽  
...  

<p>The H2020 Europlanet-2020 programme, which ended on Aug 31<sup>st</sup>, 2019, included an activity called VESPA (Virtual European Solar and Planetary Access), which focused on adapting Virtual Observatory (VO) techniques to handle Planetary Science data [1] [2]. The outcome of this activity is a contributive data distribution system where data services are located and maintained in research institutes, declared in a registry, and accessed by several clients based on a specific access protocol. During Europlanet-2020, 52 data services were installed, including the complete ESA Planetary Science Archive, and the outcome of several EU funded projects. Data are described using the EPN-TAP protocol, which parameters describe acquisition and observing conditions as well as data characteristics (physical quantity, data type, etc). A main search portal has been developed to optimize the user experience, which queries all services together. Compliance with VO standards ensures that existing tools can be used as well, either to access or visualize the data. In addition, a bridge linking the VO and Geographic Information Systems (GIS) has been installed to address formats and tools used to study planetary surfaces; several large data infrastructures were also installed or upgraded (SSHADE for lab spectroscopy, PVOL for amateurs images, AMDA for plasma-related data).</p><p>In the framework of the starting Europlanet-2024 programme, the VESPA activity will complete this system even further: 30-50 new data services will be installed, focusing on derived data, and experimental data produced in other Work Packages of Europlanet-2024; connections between PDS4 and EPN-TAP dictionaries will make PDS metadata searchable from the VESPA portal and vice versa; Solar System data present in astronomical VO catalogues will be made accessible, e.g. from the VizieR database. The search system will be connected with more powerful display and analysing tools: a run-on-demand platform will be installed, as well as Machine Learning capacities to process the available content. Finally, long-term sustainability will be improved by setting VESPA hubs to assist data providers in maintaining their services, and by using the new EU-funded European Open Science Cloud (EOSC). In addition to favoring data exploitation, VESPA will provide a handy and economical solution to Open Science challenges in the field.</p><p>The Europlanet 2020 & 2024 Research Infrastructure project have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements No 654208 & 871149.</p><p>[1] Erard et al 2018, Planet. Space Sci. <strong>150</strong>, 65-85. 10.1016/j.pss.2017.05.013. ArXiv 1705.09727  </p><p>[2] Erard et al. 2020, Data Science Journal <strong>19</strong>, 22. doi: 10.5334/dsj-2020-022.</p>

2020 ◽  
Author(s):  
Stéphane Erard ◽  
Baptiste Cecconi ◽  
Pierre Le Sidaner ◽  
Angelo Pio Rossi ◽  
Hanna Rothkaehl ◽  
...  

<p>The Europlanet-2020 programme, which ended Aug 2019, included an activity called VESPA (Virtual European Solar and Planetary Access) which focused on adapting Virtual Observatory (VO) techniques to handle Planetary Science data. We will present some aspects of VESPA at the end of this 4-years development phase and at the onset of the newly selected Europlanet-2024 programme in Feb 2020. VESPA currently distributes 54 data services which are searchable according to observing conditions and encompass a wide scope including surfaces, atmospheres, magnetospheres and planetary plasmas, small bodies, heliophysics, exoplanets, and lab spectroscopy. Versatile online visualization tools have been adapted for Planetary Science, and efforts were made to connect the Astronomy VO with related environments, e.g., GIS for planetary surfaces. The new programme will broaden and secure the former “data stewardship” concept, providing a handy solution to Open Science challenges in our community. It will also move towards a new concept of “enabling data analysis”: a run-on-demand platform will be adapted from another H2020 programme in Astronomy (ESCAPE); VESPA services will be made ready to use for Machine Learning and geological mapping activities, and will also host selected results from such analyses. More tutorials and practical use cases will be made available to facilitate access to the VESPA infrastructure.</p><p>VESPA portal: http://vespa.obspm.fr</p><p>The Europlanet 2020/2024 Research Infrastructure projects have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements No 654208 and No 871149</p>


2020 ◽  
Author(s):  
Livia Giacomini ◽  
Francesco Aloisi ◽  
Ilaria De Angelis ◽  
Stefano Capretti

<p>Planets in a room (PIAR) is a DIY kit to build a small, lowcost spherical planet simulator and planetarium projector. Teachers, science communicators that run a small museum or planetarium, planetary scientists, amateur astronomers and other individuals can easily build it and use it on their own, to show and teach the Earth and other planets and to develop and share material with a growing online community. Having started in 2017 with a first version made using 3d-printed technology, PIAR has lately gone green, with a new wooden, plastic-free version of the kit. (http://www.planetsinaroom.net/)</p> <p>The project has been developed by the italian non-profit association Speak Science, with the collaboration of the Italian National Institute for Astrophysics (INAF) and the Roma Tre University, Dipartimento di Matematica e Fisica.</p> <p>It was funded by the Europlanet Outreach Funding Scheme in 2017 and was presented to the scientific community at EPSC and other scientific Congresses in the following years. Today, it is being distributed to an increasing number of schools, science museum and research institutions. PIAR is also one of the projects selected by the Europlanet Society for education and public outreach of planetary science: in 2020, it is being distributed to the 12 Europlanet Regional Hubs all around Europe, to be used in a number of educational projects.</p> <p>In this talk we will review the state of the art of the project presenting a selection of educational material and projects that have been developed for PIAR by scientists, teachers and communicators and that are focused on planetary science and on planetary habitability.</p> <p> </p> <p>Acknowledgements</p> <p>We acknowledge for this project the vast community of amateur and professionals that is actively working on innovative educational systems for astronomy such as planetarium and virtual reality projects (both hardware and software). Planets in a room is based on the work of this vast community of people and their experiences and results. We also acknowledge Europlanet for funding this work: the project Europlanet 2024 RI has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149.”</p> <p> </p> <p>References</p> <p>Giacomini L., Aloisi F., De Angelis I., “Planets in a room”, EPSC Abstracts Vol. 11, EPSC2017-280, 2017</p> <p>Giacomini L., Aloisi F., De Angelis I., Capretti S., “Planets in a Room: a DIY, low-cost educational kit”, EPSC Abstracts Vol. 12, EPSC2018-254, 2018</p> <p>Giacomini L., Aloisi F., De Angelis I., Capretti S., “Planets on (low-cost) balloons”, EPSC AbstractsVol. 13, EPSC-DPS2019-1243-1, 2019</p> <p>Giacomini L., Aloisi F., De Angelis I., Capretti S, “(Green) Planets in a Room”, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22153, https://doi.org/10.5194/egusphere-egu2020-22153, 2020</p>


2021 ◽  
Author(s):  
Anita Heward ◽  
Jen DeWitt

<div> <p>In this presentation, we will give an overview of the Europlanet Evaluation Toolkit, a resource that aims to empower outreach providers and educators in measuring and appraising the impact of their activities. The toolkit is intended to provide advice and resources that can be simply and easily integrated into normal outreach and education activities. It is available as an interactive online resource (http://www.europlanet-eu.org/europlanet-evaluation-toolkit/), as a downloadable PDF and as a hard copy (including a book and set of activity cards).</p> </div><div> <p>The toolkit has been developed over a number of years with content provided by professional outreach evaluators Karen Bultitude and Jennifer DeWitt (UCL, UK). Initially, a series of focus groups and scoping discussions were held with active outreach providers from the planetary science community in order to determine what they wanted from such a toolkit, and what sort of tools would be of most interest. A shortlist of tools was developed based on these discussions, with volunteers testing out the tool instructions once they were drafted.</p> </div><div> <p>The toolkit begins with a brief introduction to evaluation and steps to choosing the right tools. This advice takes the form of a series of questions to help design an evaluation approach and make the most efficient and effective use possible of limited time and resources.</p> </div><div> <p>The toolkit offers a choice of 14 data collection tools that can be selected according to the audience (e.g. primary, secondary, interested adult, general public), the type of environment and activity (e.g. drop-in, interactive workshop, ongoing series, lecture/presentation or online) or according to when they might best be used (during, beginning/end, or after an event). The online version of the toolkit includes a set of interactive tables to help with the selection of which tool is most appropriate for any given situation.</p> </div><div> <p>The toolkit includes descriptions and worked examples of how to use two techniques (word-clouds and thematic coding) to analyse the data, as well as some top tips for evaluation and recommended resources.</p> </div><div> <p>For some of the tools, case study examples include information about how the tools have been used in the context of an event, how data was actually collected and analysed and what conclusions were reached, based on the data gathered.</p> </div><div> <p>The Europlanet Evaluation Toolkit has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149 (Europlanet 2024 RI) and 654208 (Europlanet 2020 RI).</p> </div>


Author(s):  
Lisa Federer ◽  
Erin Diane Foster ◽  
Ann Glusker ◽  
Margaret Henderson ◽  
Kevin Read ◽  
...  

Increasingly, users of health and biomedical libraries need assistance with challenges they face in working with their own and others’ data. Librarians have a unique opportunity to provide valuable support and assistance in data science and open science but may need to add to their expertise and skill set to have the most impact. This article describes the rationale for and development of the Medical Library Association Data Services Competency, which outlines a set of five key skills for data services and provides a course of study for gaining these skills.


2021 ◽  
Author(s):  
Torill Hamre ◽  
Finn Danielsen ◽  
Michael Køie Poulsen ◽  
Frode Monsen

<p>INTAROS is a Horizon 2020 research and innovation project developing an integrated Arctic Observation System by extending, improving, and unifying existing systems in the different regions of the Arctic. INTAROS integrates distributed repositories hosting data from ocean, atmosphere, cryosphere and land, including scientific, community-based monitoring (CBM) and citizen science (CS) data. Throughout the project, INTAROS has been working closely with several local communities and citizen science programs across the Arctic, to develop strategies and methods for ingestion of data into repositories enabling the communities to maintain and share data. A number of these CBM and CS data collections have been registered in the INTAROS Data Catalogue. Some of these collections are hosted and sustained by large international programs such as PISUNA, eBird, Secchi Disk Study and GLOBE Observer. Registration in the INTAROS Data Catalogue contributes to making these important data collections better known in a wider community of users with a vested interest in the Arctic. It also enables sharing of metadata through open standards for inclusion in other Arctic data systems. This catalogue is a key component in INTAROS, enabling users to search for data across the targeted spheres to assess their usefulness in applications and geographic areas. The catalogue is based on a world-leading system for data management, the Comprehensive Knowledge Archive Network (CKAN). With rich functionality offered out of the box combined with a flexible extension mechanism, CKAN allows for quickly setting up a fully functional data catalogue. The CKAN open-source community offers numerous extensions that can be used as-is or adapted to implement customised functionality for specific user communities. To hold additional metadata elements requested by the partners we modified the standard database schema of CKAN. The presentation will focus on the current capabilities and plans for sustaining and enhancing the INTAROS Data Catalogue.</p>


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1959 ◽  
Author(s):  
Makropoulos ◽  
Savić

Hydroinformatics, as an interdisciplinary domain that blurs boundaries between water science, data science and computer science, is constantly evolving and reinventing itself. At the heart of this evolution, lies a continuous process of critical (self) appraisal of the discipline’s past, present and potential for further evolution, that creates a positive feedback loop between legacy, reality and aspirations. The power of this process is attested by the successful story of hydroinformatics thus far, which has arguably been able to mobilize wide ranging research and development and get the water sector more in tune with the digital revolution of the past 30 years. In this context, this paper attempts to trace the evolution of the discipline, from its computational hydraulics origins to its present focus on the complete socio-technical system, by providing at the same time, a functional framework to improve the understanding and highlight the links between different strands of the state-of-art hydroinformatic research and innovation. Building on this state-of-art landscape, the paper then attempts to provide an overview of key developments that are coming up, on the discipline’s horizon, focusing on developments relevant to urban water management, while at the same time, highlighting important legal, ethical and technical challenges that need to be addressed to ensure that the brightest aspects of this potential future are realized. Despite obvious limitations imposed by a single paper’s ability to report on such a diverse and dynamic field, it is hoped that this work contributes to a better understanding of both the current state of hydroinformatics and to a shared vision on the most exciting prospects for the future evolution of the discipline and the water sector it serves.


2019 ◽  
Vol 29 (Supplement_4) ◽  
Author(s):  
M Mariani ◽  
R Pastorino ◽  
W Ricciardi ◽  
S Boccia

Abstract Background Precision health aims to prevent and predict illness, maintaining health and quality of life for as long as possible, by drawing on the new technological and data science tools to translate volumes of research and clinical data into information that citizens, patients and doctors can use. Objective The ExACT consortium, funded by the Marie Curie Research and Innovation Staff Exchange (RISE) 2017 - Horizon 2020, is aimed at building a community of academic and non-academic institutions that generates high quality, multidisciplinary collaboration by exchanging knowledge in research and training activities on precision health. Results From 2019 to 2023, 74 secondments are foreseen; staff involved will be trained on precision health research topics unavailable at their home institutions. The research topics include 5 domains: Integration of Big Data and digital solutions into healthcare systems; design and promotion of innovative citizen engagement models; education of healthcare professionals and leadership; HTA in precision health; Ethical-legal, social, organisational and policy issues surrounding precision health. Conclusions Secondees will produce key reports, policy recommendations, scientific papers, and informative materials for citizens, fostering public-private interplay and fostering integration of precision health in the EU health systems, contributing to better health for EU citizens. Key messages Once the secondees are back in their home institution, they will use competences acquired during the secondment to advance the research, and transfer the knowledge to the home organization. Sharing knowledge,building synergies and expertise and encouraging best practices,among top-level institutions,will stimulate translational effort for implementing precision health in EU health system.


2020 ◽  
Author(s):  
Ricardo Hueso ◽  
Agustin Sánchez-Lavega ◽  
Jon Legarreta ◽  
Iñaki Ordonez-Etxeberria ◽  
Jose Félix Rojas ◽  
...  

<p>PVOL is an online database of amateur observations of solar system planets hosted by the University of the Basque Country at http://pvol2.ehu.es/ [1]. PVOL stands for Planetary Virtual Observatory and Laboratory and is one of the data services integrated in VESPA: a large collection of data services integrated in the Virtual European Solar and Planetary Access services using the same data access protocol (EPN-TAP) [2]. VESPA is an integral part of the Europlanet 2020 and 2024 Research Infrastructures and PVOL is one of its most used services. PVOL accumulates images provided by more than 300 amateur observers distributed through the globe and currently contains more than 47,000 image files. Most of the data correspond to image observations of Jupiter (67%) and Saturn (22%), but PVOL contains also useful data from Venus, Mars, Uranus and Neptune and some smaller collections of objects with no atmosphere (the Moon and Galilean satellites). In this contribution we document future plans for the service which will be carried out through 2021-2023 and we show the scientific potential of the data available in PVOL.</p> <p>Future plans for PVOL include frequent observation alerts, integration in the database of navigation files of the images from the popular WinJupos software (ims files), addition of amateur spectra of the giant planets, and a search engine and new data service of Jupiter maps obtained from the JunoCam instrument on the Juno mission that will also be integrated in PVOL/VESPA. This will allow to perform combined searches of data obtained close in time from amateurs (PVOL), HST (queries of HST images are also integrated in VESPA) and JunoCam (new service).</p> <p>The science potential of amateur data comes from the availability of long-term data (PVOL contains Jupiter data since 2000 and Mars and Venus data since 2016), frequent observations (several daily observations of each planet close to their oppositions capable to cover complete longitudes of each planet) and high-resolution images provided by key contributors, with some of them capable to resolve highly-contrasted features of 0.05-0.10 arcsec. We review recent trends in analysis of this data from an analysis of scientific publications partially or highly based on data obtained from PVOL. We show that amateur observations remain as a valuable resource for high-impact science on modern research on different planets (3-5).</p> <p><strong>Acknowledgements</strong></p> <p>Europlanet 2024 RI has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149. We are very grateful to the ensemble of amateur astronomers sending their data to PVOL. We are in debt by the quality of many of these observations and the regular observations provided by many of them requiring long sleepless nights and even longer days of detailed image processing.</p> <p><strong>References</strong></p> <p>(1) Hueso et al., The Planetary Virtual Observatory and Laboratory (PVOL) and its integration into the Virtual European Solar and Planetary Access (VESPA). Planet. Space Science, 150, 22-35 (2018).</p> <p>(2) Erard et al., VESPA: A community-driven Virtual Observatory in Planetary Science. Planet. Space Science, 150, 65-85 (2018).</p> <p>(3) Sánchez-Lavega et al., The impact of a large object on Jupiter in 2009 July, Astrophysical Journal Letters, 715, L155 (2010).</p> <p>(4) Sánchez-Lavega et al., An extremely high altitude plume seen at Mars morning terminator. Nature, 518, 525-528 (2015).</p> <p>(5) Sánchez-Lavega et al., A complex storm system in Saturn’s north polar atmosphere in 2018, Nature Astronomy, 4, 180-187 (2020).</p>


2017 ◽  
Vol 45 ◽  
pp. 1760075 ◽  
Author(s):  
Ulisses Barres de Almeida ◽  
Benno Bodmann ◽  
Paolo Giommi ◽  
Carlos H. Brandt

Astrophysics and Space Science are becoming increasingly characterised by what is now known as “big data”, the bottlenecks for progress partly shifting from data acquisition to “data mining”. Truth is that the amount and rate of data accumulation in many fields already surpasses the local capabilities for its processing and exploitation, and the efficient conversion of scientific data into knowledge is everywhere a challenge. The result is that, to a large extent, isolated data archives risk being progressively likened to “data graveyards”, where the information stored is not reused for scientific work. Responsible and efficient use of these large data-sets means democratising access and extracting the most science possible from it, which in turn signifies improving data accessibility and integration. Improving data processing capabilities is another important issue specific to researchers and computer scientists of each field. The project presented here wishes to exploit the enormous potential opened up by information technology at our age to advance a model for a science data center in astronomy which aims to expand data accessibility and integration to the largest possible extent and with the greatest efficiency for scientific and educational use. Greater access to data means more people producing and benefiting from information, whereas larger integration of related data from different origins means a greater research potential and increased scientific impact. The project of the BSDC is preoccupied, primarily, with providing tools and solutions for the Brazilian astronomical community. It nevertheless capitalizes on extensive international experience, and is developed in full cooperation with the ASI Science Data Center (ASDC), from the Italian Space Agency, granting it an essential ingredient of internationalisation. The BSDC is Virtual Observatory-complient and part of the “Open Universe”, a global initiative built under the auspices of the United Nations.


Sign in / Sign up

Export Citation Format

Share Document