scholarly journals A quantitative approach to evaluating the GWP timescale through implicit discount rates

2018 ◽  
Author(s):  
Marcus C. Sarofim ◽  
Michael R. Giordano

Abstract. The 100-year Global Warming Potential (GWP) is the primary metric used to compare the climate impacts of different greenhouse gases (GHGs). The GWP relies on radiative forcing rather than damages, assumes constant future concentrations, and integrates over a timescale of 100 years without discounting: these choices lead to a metric which is transparent and simple to calculate, but have also been criticized. In this paper, we take a quantitative approach to evaluating the choice of time-horizon, accounting for many of these complicating factors. By calculating an equivalent GWP timescale based on discounted damages resulting from CH4 and CO2 pulses, we show that a 100-year timescale is consistent with a discount rate of 3.3 % (interquartile range of 2.7 % to 4.1 % in a sensitivity analysis). This range of discount rates is consistent with, or larger than, those usually considered for climate impact analyses. With increasing discount rates equivalent timescales decrease. We recognize the limitations of evaluating metrics by relying only on climate impact equivalencies without consideration of the economic and political implications of metric implementation.

2018 ◽  
Vol 9 (3) ◽  
pp. 1013-1024 ◽  
Author(s):  
Marcus C. Sarofim ◽  
Michael R. Giordano

Abstract. The 100-year global warming potential (GWP) is the primary metric used to compare the climate impacts of emissions of different greenhouse gases (GHGs). The GWP relies on radiative forcing rather than damages, assumes constant future concentrations, and integrates over a timescale of 100 years without discounting; these choices lead to a metric that is transparent and simple to calculate, but have also been criticized. In this paper, we take a quantitative approach to evaluating the choice of time horizon, accounting for many of these complicating factors. By calculating an equivalent GWP timescale based on discounted damages resulting from CH4 and CO2 pulses, we show that a 100-year timescale is consistent with a discount rate of 3.3 % (interquartile range of 2.7 % to 4.1 % in a sensitivity analysis). This range of discount rates is consistent with those often considered for climate impact analyses. With increasing discount rates, equivalent timescales decrease. We recognize the limitations of evaluating metrics by relying only on climate impact equivalencies without consideration of the economic and political implications of metric implementation.


2021 ◽  
Author(s):  
Andrew Gettelman ◽  
Chieh-Chieh Chen ◽  
Charles G. Bardeen

Abstract. The COVID19 pandemic caused significant economic disruption in 2020 and severely impacted air traffic. We use a state of the art Earth System Model and ensembles of tightly constrained simulations to evaluate the effect of the reductions in aviation traffic on contrail radiative forcing and climate in 2020. In the absence of any COVID19 pandemic caused reductions, the model simulates a contrail Effective Radiative Forcing (ERF) 62 ± 59 m Wm−2 (2 standard deviations). The contrail ERF has complex spatial and seasonal patterns that combine the offsetting effect of shortwave (solar) cooling and longwave (infrared) heating from contrails and contrail cirrus. Cooling is larger in June–August due to the preponderance of aviation in the N. Hemisphere, while warming occurs throughout the year. The spatial and seasonal forcing variations also map onto surface temperature variations. The net land surface temperature change due to contrails in a normal year is estimated at 0.13 ± 0.04 K (2 standard deviations) with some regions warming as much as 0.7 K. The effect of COVID19 reductions in flight traffic decreased contrails. The unique timing of such reductions, which were maximum in N. Hemisphere spring and summer when the largest contrail cooling occurs, means that cooling due to fewer contrails in boreal spring and fall was offset by warming due to fewer contrails in boreal summer to give no significant annual averaged ERF from contrail changes in 2020. Despite no net significant global ERF, because of the spatial and seasonal timing of contrail ERF, some land regions that would have cooled slightly (minimum −0.2 K) but significantly from contrail changes in 2020. The implications for future climate impacts of contrails are discussed.


2020 ◽  
Author(s):  
Inés Sanz-Morère ◽  
Sebastian D. Eastham ◽  
Florian Allroggen ◽  
Raymond L. Speth ◽  
Steven R. H. Barrett

Abstract. Condensation trails (“contrails”) which form behind aircraft are estimated to cause on the order of 50 % of the total climate impact of aviation, matching the total impact of all accumulated aviation-attributable CO2. The climate impacts of these contrails are highly uncertain, in part due to the poorly-understood effect of overlap between contrails and other cloud layers. With the airline industry projected to grow by approximately 4.5 % each year over the next 20 years, instances of contrail overlap are expected to increase, including any potential mitigating or amplifying effects on contrail-attributable radiative forcing. However, the impacts of cloud-contrail overlaps are not well understood, and the effect of contrail-contrail overlap has never been quantified. In this study we develop and apply a new model of contrail radiative forcing which explicitly accounts for overlap between cloud layers. Cloud-contrail overlap is found to be responsible for 93 % of net radiative forcing attributable to 2015 contrails. We also find significant variation in the sensitivity of contrail radiative forcing to cloud cover with respect to geographic location. Clouds significantly increase warming at high latitudes and over sea, transforming cooling contrails into warming ones in the North-Atlantic corridor. Based on the same data, our results indicate that disregarding overlap between a given pair of contrail layers can result in longwave and shortwave radiative forcing being overestimated by up to 16 % and 25 % respectively, with the highest bias observed at high optical depths (> 0.4) and high solar zenith angles (> 75°). When applied to estimated global contrail coverage data for 2015, contrail-contrail overlap reduces both the longwave and shortwave forcing by ~ 2 % relative to calculations which ignore overlap. The effect is greater for longwave radiation, resulting in a 3 % net reduction in the estimated RF when overlap is correctly accounted for. This suggests that contrail-contrail overlap effects can likely be neglected in estimates of the current-day environmental impacts of aviation. However, the effect of contrail-contrail overlap is likely to increase in the future as the airline industry extends into new regions, intensifies in existing regions, and invests in higher-efficiency engines which are thought to promote contrail formation.


2013 ◽  
Vol 4 (1) ◽  
pp. 145-170 ◽  
Author(s):  
B. Aamaas ◽  
G. P. Peters ◽  
J. S. Fuglestvedt

Abstract. In the context of climate change, emissions of different species (e.g., carbon dioxide and methane) are not directly comparable since they have different radiative efficiencies and lifetimes. Since comparisons via detailed climate models are computationally expensive and complex, emission metrics were developed to allow a simple and straightforward comparison of the estimated climate impacts of emissions of different species. Emission metrics are not unique and variety of different emission metrics has been proposed, with key choices being the climate impacts and time horizon to use for comparisons. In this paper, we present analytical expressions and describe how to calculate common emission metrics for different species. We include the climate metrics radiative forcing, integrated radiative forcing, temperature change and integrated temperature change in both absolute form and normalised to a reference gas. We consider pulse emissions, sustained emissions and emission scenarios. The species are separated into three types: CO2 which has a complex decay over time, species with a simple exponential decay, and ozone precursors (NOx, CO, VOC) which indirectly effect climate via various chemical interactions. We also discuss deriving Impulse Response Functions, radiative efficiency, regional dependencies, consistency within and between metrics and uncertainties. We perform various applications to highlight key applications of emission metrics, which show that emissions of CO2 are important regardless of what metric and time horizon is used, but that the importance of short lived climate forcers varies greatly depending on the metric choices made. Further, the ranking of countries by emissions changes very little with different metrics despite large differences in metric values, except for the shortest time horizons (GWP20).


2007 ◽  
Vol 7 (4) ◽  
pp. 12185-12229 ◽  
Author(s):  
V. Grewe ◽  
A. Stenke

Abstract. Climate change is a challenge to society and to cope with requires assessment tools which are suitable to evaluate new technology options with respect to their impact on climate. Here we present AirClim, a model which comprises a linearisation of the processes occurring from the emission to an estimate in near surface temperature change, which is presumed to be a reasonable indicator for climate change. The model is designed to be applicable to aircraft technology, i.e.~the climate agents CO2, H2O, CH4 and O3 (latter two resulting from NOx-emissions) and contrails are taken into account. It employs a number of precalculated atmospheric data and combines them with aircraft emission data to obtain the temporal evolution of atmospheric concentration changes, radiative forcing and temperature changes. The linearisation is based on precalculated data derived from 25 steady-state simulations of the state-of-the-art climate-chemistry model E39/C, which include sustained normalised emissions at various atmospheric regions. The results show that strongest climate impacts from ozone changes occur for emissions in the tropical upper troposphere (60 mW/m²; 80 mK for 1 TgN emitted), whereas from methane in the middle tropical troposphere (–2.7% change in methane lifetime; –30 mK per TgN). The estimate of the temperature changes caused by the individual climate agents takes into account a perturbation lifetime, related to the region of emission. A comparison of this approach with results from the TRADEOFF and SCENIC projects shows reasonable agreement with respect to concentration changes, radiative forcing, and temperature changes. The total impact of a supersonic fleet on radiative forcing (mainly water vapour) is reproduced within 5%. For subsonic air traffic (sustained emissions after 2050) results show that although ozone-radiative forcing is much less important than that from CO2 for the year 2100. However the impact on temperature is of comparable size even when taking into account temperature decreases from CH4. That implies that all future measures for climate stabilisation should concentrate on both CO2 and NOx emissions. A direct comparison of super- with subsonic aircraft (250 passengers, 5400 nm) reveals a 5 times higher climate impact of supersonics.


2007 ◽  
Vol 7 (19) ◽  
pp. 5129-5145 ◽  
Author(s):  
V. Grewe ◽  
A. Stenke ◽  
M. Ponater ◽  
R. Sausen ◽  
G. Pitari ◽  
...  

Abstract. The demand for intercontinental transportation is increasing and people are requesting short travel times, which supersonic air transportation would enable. However, besides noise and sonic boom issues, which we are not referring to in this investigation, emissions from supersonic aircraft are known to alter the atmospheric composition, in particular the ozone layer, and hence affect climate significantly more than subsonic aircraft. Here, we suggest a metric to quantitatively assess different options for supersonic transport with regard to the potential destruction of the ozone layer and climate impacts. Options for fleet size, engine technology (nitrogen oxide emission level), cruising speed, range, and cruising altitude, are analyzed, based on SCENIC emission scenarios for 2050, which underlay the requirements to be as realistic as possible in terms of e.g., economic markets and profitable market penetration. This methodology is based on a number of atmosphere-chemistry and climate models to reduce model dependencies. The model results differ significantly in terms of the response to a replacement of subsonic aircraft by supersonic aircraft, e.g., concerning the ozone impact. However, model differences are smaller when comparing the different options for a supersonic fleet. Those uncertainties were taken into account to make sure that our findings are robust. The base case scenario, where supersonic aircraft get in service in 2015, a first fleet fully operational in 2025 and a second in 2050, leads in our simulations to a near surface temperature increase in 2050 of around 7 mK and with constant emissions afterwards to around 21 mK in 2100. The related total radiative forcing amounts to 22 mWm2 in 2050, with an uncertainty between 9 and 29 mWm2. A reduced supersonic cruise altitude or speed (from Mach 2 to Mach 1.6) reduces both, climate impact and ozone destruction, by around 40%. An increase in the range of the supersonic aircraft leads to more emissions at lower latitudes since more routes to SE Asia are taken into account, which increases ozone depletion, but reduces climate impact compared to the base case.


2015 ◽  
Vol 15 (6) ◽  
pp. 9293-9353 ◽  
Author(s):  
D. M. Westervelt ◽  
L. W. Horowitz ◽  
V. Naik ◽  
D. L. Mauzerall

Abstract. It is widely expected that global emissions of atmospheric aerosols and their precursors will decrease strongly throughout the remainder of the 21st century, due to emission reduction policies enacted to protect human health. For instance, global emissions of aerosols and their precursors are projected to decrease by as much as 80% by the year 2100, according to the four Representative Concentration Pathway (RCP) scenarios. The removal of aerosols will cause unintended climate consequences, including an unmasking of global warming from long-lived greenhouse gases. We use the Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3) to simulate future climate over the 21st century with and without the aerosol emission changes projected by each of the RCPs in order to isolate the radiative forcing and climate response resulting from the aerosol reductions. We find that the projected global radiative forcing and climate response due to aerosol decreases do not vary significantly across the four RCPs by 2100, although there is some mid-century variation, especially in cloud droplet effective radius, that closely follows the RCP emissions and energy consumption projections. Up to 1 W m−2 of radiative forcing may be unmasked globally from 2005 to 2100 due to reductions in aerosol and precursor emissions, leading to average global temperature increases up to 1 K and global precipitation rate increases up to 0.09 mm d−1. Regionally and locally, climate impacts can be much larger, with a 2.1 K warming projected over China, Japan, and Korea due to the reduced aerosol emissions in RCP8.5, as well as nearly a 0.2 mm d−1 precipitation increase, a 7 g m−2 LWP decrease, and a 2 μm increase in cloud droplet effective radius. Future aerosol decreases could be responsible for 30–40% of total climate warming by 2100 in East Asia, even under the high greenhouse gas emissions scenario (RCP8.5). The expected unmasking of global warming caused by aerosol reductions will require more aggressive greenhouse gas mitigation policies than anticipated in order to meet desired climate targets.


2021 ◽  
Vol 21 (12) ◽  
pp. 9405-9416
Author(s):  
Andrew Gettelman ◽  
Chieh-Chieh Chen ◽  
Charles G. Bardeen

Abstract. The COVID-19 pandemic caused significant economic disruption in 2020 and severely impacted air traffic. We use a state-of-the-art Earth system model and ensembles of tightly constrained simulations to evaluate the effect of the reductions in aviation traffic on contrail radiative forcing and climate in 2020. In the absence of any COVID-19-pandemic-caused reductions, the model simulates a contrail effective radiative forcing (ERF) of 62 ± 59 mW m−2 (2 standard deviations). The contrail ERF has complex spatial and seasonal patterns that combine the offsetting effect of shortwave (solar) cooling and longwave (infrared) heating from contrails and contrail cirrus. Cooling is larger in June–August due to the preponderance of aviation in the Northern Hemisphere, while warming occurs throughout the year. The spatial and seasonal forcing variations also map onto surface temperature variations. The net land surface temperature change due to contrails in a normal year is estimated at 0.13 ± 0.04 K (2 standard deviations), with some regions warming as much as 0.7 K. The effect of COVID-19 reductions in flight traffic decreased contrails. The unique timing of such reductions, which were maximum in Northern Hemisphere spring and summer when the largest contrail cooling occurs, means that cooling due to fewer contrails in boreal spring and fall was offset by warming due to fewer contrails in boreal summer to give no significant annual averaged ERF from contrail changes in 2020. Despite no net significant global ERF, because of the spatial and seasonal timing of contrail ERF, some land regions would have cooled slightly (minimum −0.2 K) but significantly from contrail changes in 2020. The implications for future climate impacts of contrails are discussed.


2007 ◽  
Vol 7 (3) ◽  
pp. 6143-6187 ◽  
Author(s):  
V. Grewe ◽  
A. Stenke ◽  
M. Ponater ◽  
R. Sausen ◽  
G. Pitari ◽  
...  

Abstract. The demand for intercontinental transportation is increasing and people are requesting short travel times, which supersonic air transportation would enable. However, besides noise and sonic boom issues, which we are not referring to in this investigation, emissions from supersonic aircraft are known to alter the atmospheric composition, in particular the ozone layer, and hence affect climate significantly more than subsonic aircraft. Here, we suggest a metric to quantitatively assess different options for supersonic transport with regard to the potential destruction of the ozone layer and climate impacts. Options for fleet size, engine technology (nitrogen oxide emission level), cruising speed, range, and cruising altitude, are analyzed, based on SCENIC emissions scenarios for 2050, which underlay the requirements to be as realistic as possible in terms of e.g. economic markets and profitable market penetration. This methodology is based on a number of atmosphere-chemistry and climate models to reduce model dependencies. The model results differ significantly in terms of the response to a replacement of subsonic aircraft by supersonic aircraft. However, model differences are smaller when comparing the different options for a supersonic fleet. The base scenario, where supersonic aircraft get in service in 2015, a first fleet fully operational in 2025 and a second in 2050, lead in our simulations to a near surface temperature increase in 2050 of around 7 mK and with constant emissions afterwards to around 21 mK in 2100. The related total radiative forcing amounts to 22 mWm²in 2050, with an uncertainty between 9 and 29 mWm². A reduced supersonic cruise altitude or speed (from March 2 to Mach 1.6) reduces both, climate impact and ozone destruction, by around 40%. An increase in the range of the supersonic aircraft leads to more emissions at lower latitudes since more routes to SE Asia are taken into account, which increases ozone depletion, but reduces climate impact compared to the base case.


2017 ◽  
Vol 30 (16) ◽  
pp. 6561-6577 ◽  
Author(s):  
Giuseppe Zappa ◽  
Theodore G. Shepherd

There is increasing interest in understanding the regional impacts of different global warming targets. However, several regional climate impacts depend on the atmospheric circulation, whose response to climate change remains substantially uncertain and not interpretable in a probabilistic sense in multimodel ensemble projections. To account for these uncertainties, a novel approach where regional climate change is analyzed as a function of carbon emissions conditional on plausible storylines of atmospheric circulation change is here presented and applied to the CMIP5 models’ future projections. The different storylines are determined based on the response in three remote drivers of regional circulation: the tropical and polar amplification of global warming and changes in stratospheric vortex strength. As an illustration of this approach, it is shown that the severity of the projected wintertime Mediterranean precipitation decline and central European windiness increase strongly depends on the storyline of circulation change. For a given magnitude of global warming, the highest impact storyline for these aspects of European climate is found for a high tropical amplification and a strengthening of the vortex. The difference in the precipitation and wind responses between the storylines is substantial and equivalent to the contribution from several degrees of global warming. Improving the understanding of the remote driver responses is thus needed to better bound the projected regional impacts in the European sector. The value of these storylines to represent the uncertainty in regional climate projections and to inform the selection of CMIP5 models in regional climate impact studies is discussed.


Sign in / Sign up

Export Citation Format

Share Document