scholarly journals 57 years (1960–2017) of snow and meteorological observations from a mid-altitude mountain site (Col de Porte, France, 1325 m of altitude)

2019 ◽  
Vol 11 (1) ◽  
pp. 71-88 ◽  
Author(s):  
Yves Lejeune ◽  
Marie Dumont ◽  
Jean-Michel Panel ◽  
Matthieu Lafaysse ◽  
Philippe Lapalus ◽  
...  

Abstract. In this paper, we introduce and provide access to daily (1960–2017) and hourly (1993–2017) datasets of snow and meteorological data measured at the Col de Porte site, 1325 m a.s.l., Chartreuse, France. Site metadata and ancillary measurements such as soil properties and masks of the incident solar radiation are also provided. Weekly snow profiles are made available from September 1993 to March 2018. A detailed study of the uncertainties originating from both measurement errors and spatial variability within the measurement site is provided for several variables. We show that the estimates of the ratio of diffuse-to-total shortwave broadband irradiance is affected by an uncertainty of ±0.21 (no unit). The estimated root mean square deviation, which mainly represents spatial variability, is ±10 cm for snow depth, ±25 kg m−2 for the water equivalent of snow cover (SWE), and ±1 K for soil temperature (±0.4 K during the snow season). The daily dataset can be used to quantify the effect of climate change at this site, with a decrease of the mean snow depth (1 December to 30 April) of 39 cm from the 1960–1990 period to the 1990–2017 period (40 % of the mean snow depth for 1960–1990) and an increase in temperature of +0.90 K for the same periods. Finally, we show that the daily and hourly datasets are useful and appropriate for driving and evaluating a snowpack model over such a long period. The data are placed on the repository of the Observatoire des Sciences de l'Univers de Grenoble (OSUG) data centre: https://doi.org/10.17178/CRYOBSCLIM.CDP.2018.

2018 ◽  
Author(s):  
Yves Lejeune ◽  
Marie Dumont ◽  
Jean-Michel Panel ◽  
Matthieu Lafaysse ◽  
Philippe Lapalus ◽  
...  

Abstract. In this paper, we introduce and provide access to a daily (1960–2017) and hourly (1993–2017) dataset of snow and meteorological data measured at the Col de Porte site, 1325 m a.s.l, Charteuse, France. Site metadata and ancillary measurements such as soil properties and masks of the incident solar radiation are also provided. Weekly snow profiles are made available from September 1993 to April 2015. A detailed study of the uncertainties originating from both measurements errors and spatial variability within the measurement site is provided for several variables. We show that the estimates of the ratio of diffuse to total shortwave broadband irradiance is affected by an uncertainty of ± 0.21. The estimated root mean squared deviation, that can be mainly attributed to spatial variability, is ± 10 cm for snow depth, ± 25 kg m−2 for snow water and ± 1 K for soil temperature (± 0.4 K during the snow season). The daily dataset can be used to quantify the effect of climate change at this site with a reduction of the mean snow depth (Dec. 1st to April 30th of 39 cm from 1960–1990 to 1990–2017 and an increase in temperature of + 0.90 K for the same periods. Finally, we show that the daily and hourly datasets are useful and appropriate for driving and evaluating a snowpack model over such a long period. The data are placed on the repository of the Observatoire des Sciences de l'Univers de Grenoble (OSUG) datacenter: https://doi.org/10.17178/CRYOBSCLIM.CDP.2018.


2020 ◽  
Author(s):  
Michael Weber ◽  
Franziska Koch ◽  
Matthias Bernhardt ◽  
Karsten Schulz

Abstract. Worldwide, there is a strong discrepancy between the importance of high alpine catchments for the water cycle and the availability of meteorological and snow hydrological in situ measurements. Good knowledge on the timing and quantity of snow meltwater is crucial for numerous hydrological applications, also far way downstream. For several decades, the number of global data sets of different meteorological and land surface parameters has been increasing, but their applicability in modelling high alpine regions has been insufficiently investigated so far. We tested such data for a 10-year period with the physically-based Cold Regions Hydrological Model (CRHM). Our study site is the gauged high alpine Research Catchment Zugspitze (RCZ) of 12 km2 in the European Alps. We used a selection of nine different meteorological driver data setups including data transferred from another alpine station, data from an atmospheric model and hybrid data, whereof we investigated data for all meteorological parameters and substituting precipitation only. For one product, we applied an advanced downscaling approach to test the advantage of such methods. The range between all setups is high at 3.5 °C for the mean decadal temperature and at 1510 mm for the mean decadal precipitation sum. The comparison of all model results with measured snow depth and reference simulations driven with in situ meteorological data demonstrates that the setup with the transferred data performs best, followed by the substitution of precipitation only with hybrid data. All other setups were unrealistic or showed plausible results only for some parts of the RCZ. As a second goal, we investigated potential differences in model performance resulting from topographic parameterization according to three globally available digital elevation models (DEMs); two with 30 m and one with 1 km resolution. As reference, we used a 2.5 m resolution DEM. The simulations with all DEM setups performed well at the snow depth measurement sites and on catchment scale, even if they indicate considerable differences. Differences are mainly caused by product specific topography induced differences in solar radiation. Surprisingly, the setup with the coarsest DEM performed best in describing the catchment mean due to averaged out topographic differences. However, this was not the case for a finer resolution. For the two plausible meteorological setups and all DEM setups, we additionally investigated the maximum quantity and the temporal development of the snowpack as well as the runoff regime. Even those quite plausible setups revealed differences of up to 20 % in snowpack volume and duration, which consequently lead to considerable shifts in runoff. Overall, we could demonstrate that global data are a valuable source to substitute single missing meteorological variables or topographic information, but the exclusive use of such driver data does not provide sufficiently accurate results for the RCZ. For the future, however, we expect an increasing role of global data in modelling ungauged high alpine basins due to further product improvements, spatial refinements and further steps regarding assimilation with remote sensing data.


1966 ◽  
Vol 25 ◽  
pp. 197-222 ◽  
Author(s):  
P. J. Message

An analytical discussion of that case of motion in the restricted problem, in which the mean motions of the infinitesimal, and smaller-massed, bodies about the larger one are nearly in the ratio of two small integers displays the existence of a series of periodic solutions which, for commensurabilities of the typep+ 1:p, includes solutions of Poincaré'sdeuxième sortewhen the commensurability is very close, and of thepremière sortewhen it is less close. A linear treatment of the long-period variations of the elements, valid for motions in which the elements remain close to a particular periodic solution of this type, shows the continuity of near-commensurable motion with other motion, and some of the properties of long-period librations of small amplitude.To extend the investigation to other types of motion near commensurability, numerical integrations of the equations for the long-period variations of the elements were carried out for the 2:1 interior case (of which the planet 108 “Hecuba” is an example) to survey those motions in which the eccentricity takes values less than 0·1. An investigation of the effect of the large amplitude perturbations near commensurability on a distribution of minor planets, which is originally uniform over mean motion, shows a “draining off” effect from the vicinity of exact commensurability of a magnitude large enough to account for the observed gap in the distribution at the 2:1 commensurability.


Author(s):  
Noriyuki Kuwano ◽  
Masaru Itakura ◽  
Kensuke Oki

Pd-Ce alloys exhibit various anomalies in physical properties due to mixed valences of Ce, and the anomalies are thought to be strongly related with the crystal structures. Since Pd and Ce are both heavy elements, relative magnitudes of (fcc-fpd) are so small compared with <f> that superlattice reflections, even if any, sometimes cannot be detected in conventional x-ray powder patterns, where fee and fpd are atomic scattering factors of Ce and Pd, and <f> the mean value in the crystal. However, superlattices in Pd-Ce alloys can be analyzed by electron microscopy, thanks to the high detectability of electron diffraction. In this work, we investigated modulated superstructures in alloys with 12.5 and 15.0 at.%Ce.Ingots of Pd-Ce alloys were prepared in an arc furnace under atmosphere of ultra high purity argon. The disc specimens cut out from the ingots were heat-treated in vacuum and electrothinned to electron transparency by a jet method.


2018 ◽  
Vol 934 (4) ◽  
pp. 59-62
Author(s):  
V.I. Salnikov

The question of calculating the limiting values of residuals in geodesic constructions is considered in the case when the limiting value for measurement errors is assumed equal to 3m, ie ∆рred = 3m, where m is the mean square error of the measurement. Larger errors are rejected. At present, the limiting value for the residual is calculated by the formula 3m√n, where n is the number of measurements. The article draws attention to two contradictions between theory and practice arising from the use of this formula. First, the formula is derived from the classical law of the normal Gaussian distribution, and it is applied to the truncated law of the normal distribution. And, secondly, as shown in [1], when ∆рred = 2m, the sums of errors naturally take the value equal to ?pred, after which the number of errors in the sum starts anew. This article establishes its validity for ∆рred = 3m. A table of comparative values of the tolerances valid and recommended for more stringent ones is given. The article gives a graph of applied and recommended tolerances for ∆рred = 3m.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 749
Author(s):  
Luís Henrique Silva ◽  
Paulo Santos ◽  
Luís C. C. Coelho ◽  
Pedro Jorge ◽  
José Manuel Baptista

Optical fiber gratings have long shown their sensing capabilities. One of the main challenges, however, is the interrogation method applied, since typical systems tend to use broadband light sources with optical spectrum analyzers, laser scanning units or CCD (Charged Coupled Device) spectrometers. The following paper presents the development of an interrogation system, which explores the temperature response of a multimode laser diode, in order to interrogate long period fiber gratings. By performing a spectral sweep along one of its rejection bands, a discrete attenuation spectrum is created. Through a curve fitting technique, the original spectrum is restored. The built unit, while presenting a substantially reduced cost compared with typical interrogation systems, is capable of interrogating along a 10 nm window with measurement errors reaching minimum values as low as 0.4 nm, regarding the grating central wavelength, and 0.4 dB for its attenuation. Given its low cost and reduced dimensions, the developed system shows potential for slow-changing field applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chaoyu Yang ◽  
Haibin Ye

AbstractA coastal front was detected in the eastern Guangdong (EGD) coastal waters during a downwelling-favorable wind period by using the diffuse attenuation coefficient at 490 nm (Kd(490)). Long-term satellite data, meteorological data and hydrographic data collected from 2003 to 2017 were jointly utilized to analyze the environmental factors affecting coastal fronts. The intensities of the coastal fronts were found to be associated with the downwelling intensity. The monthly mean Kd(490) anomalies in shallow coastal waters less than 25 m deep along the EGD coast and the monthly mean Ekman pumping velocities retrieved by the ERA5 dataset were negatively correlated, with a Pearson correlation of − 0.71. The fronts started in October, became weaker and gradually disappeared after January, extending southwestward from the southeastern coast of Guangdong Province to the Wanshan Archipelago in the South China Sea (SCS). The cross-frontal differences in the mean Kd(490) values could reach 3.7 m−1. Noticeable peaks were found in the meridional distribution of the mean Kd(490) values at 22.5°N and 22.2°N and in the zonal distribution of the mean Kd(490) values at 114.7°E and 114.4°E. The peaks tended to narrow as the latitude increased. The average coastal surface currents obtained from the global Hybrid Coordinate Ocean Model (HYCOM) showed that waters with high nutrient and sediment contents in the Fujian and Zhejiang coastal areas in the southern part of the East China Sea could flow into the SCS. The directions and lengths of the fronts were found to be associated with the flow advection.


2021 ◽  
Author(s):  
Paola Mazzoglio ◽  
Ilaria Butera ◽  
Pierluigi Claps

&lt;p&gt;The intensity and the spatial distribution of precipitation depths are known to be highly dependent on relief and geomorphological parameters. Complex environments like mountainous regions are prone to intense and frequent precipitation events, especially if located near the coastline. Although the link between the mean annual rainfall and geomorphological parameters has received substantial attention, few literature studies investigate the relationship between the sub-daily maximum annual rainfall depth and geographical or morphological landscape features.&lt;br&gt;In this study, the mean of the rainfall extremes in Italy, recently revised in the so-called I&lt;sup&gt;2&lt;/sup&gt;-RED dataset, are investigated in their spatial variability in comparison with some landscape and also some broad climatic characteristics. The database includes all sub-daily rainfall extremes recorded in Italy from 1916 until 2019 and this analysis considers their mean values (from 1 to 24 hours) in stations with at least 10 years of records, involving more than 3700 stations.&lt;br&gt;The geo-morpho-climatic factors considered range from latitude, longitude and minimum distance from the coastline on the geographic side, to elevation, slope, openness and obstruction morphological indices, and also include an often-neglected robust climatological information, as the local mean annual rainfall.&lt;br&gt;Obtained results highlight that the relationship between the annual maximum rainfall depths and the hydro-geomorphological parameters is not univocal over the entire Italian territory and over different time intervals. Considering the whole of Italy, the highest correlation is reached between the mean values of the 24-hours records and the mean annual precipitation (correlation coefficient greater than 0.75). This predominance remains also in sub-areas of the Italian territory (i.e., the Alpine region, the Apennines or the coastal areas) but correlation decreases as the time interval decreases, except for the Alpine region (0.73 for the 1-hour maximum). The other geomorphological parameters seem to act in conjunction, making it difficult to evaluate, with a simple linear regression analysis, their impact. As an example, the absolute value of the correlation coefficient between the elevation and the 1-hour extremes is greater than 0.35 for the Italian and the Alpine regions, while for the 24-hours interval it is greater than 0.35 over the coastal areas.&lt;br&gt;To further investigate the spatial variability of the relationship between rainfall and elevation, a spatial linear regression analysis has been undertaken. Local linear relationships have been fitted in circles centered on any of the 0.5-km size pixels in Italy, with 1 to 30 km radius and at least 5 stations included. Results indicate the need of more comprehensive terrain analysis to better understand the causes of local increasing or decreasing relations, poorly described in the available literature.&lt;/p&gt;


2006 ◽  
Vol 36 (11) ◽  
pp. 2794-2802 ◽  
Author(s):  
Ben Bond-Lamberty ◽  
Karen M Brown ◽  
Carol Goranson ◽  
Stith T Gower

This study analyzed the spatial dependencies of soil moisture and temperature in a six-stand chronosequence of boreal black spruce (Picea mariana (Mill.) BSP) stands. Spatial variability of soil temperature (TSOIL) was evaluated twice during the growing season using four transects in each stand, employing a cyclic sampling design with measurements spaced 2–92 m apart. Soil moisture (θg) was measured on one occasion. A spherical model was used to analyze the geostatistical correlation structure; θg and TSOIL at the 7- and 21-year-old stands did not exhibit stable ranges or sills. The fits with stable ranges and sills modeled the spatial patterns in the older stands reasonably well, although unexplained variability was high. Calculated ranges varied from 3 to 150 m for these stands, lengths probably related to structural characteristics influential in local-scale energy transfer. Transect-to-transect variability was significant and typically 5%–15% of the mean for TSOIL and 10%–70% for θg. TSOIL and θg were negatively correlated for most stands and depths, with TSOIL dropping 0.5–0.9 °C for every 1% rise in θg. The results reported here provide initial data to assess the spatial variability of TSOIL and θg in a variety of boreal forest stand ages.


2015 ◽  
Vol 42 (1) ◽  
Author(s):  
Magdalena Opała

Abstract An annually resolved and absolutely dated ring-width chronology spanning 443 years has been constructed using the historical and living-tree Scots pine samples from the Upper Silesia, south of Poland. The constructed regional chronology, based on six object chronologies, covers the period of 1568-2010. It is composed of 178 wood samples with the mean correlation of 0.51, mean series length of 104 years and mean EPS of 0.85. In total, 65 extreme years were distinguished. Their inde-pendent verification, based on the historical and meteorological data, showed significant correlation with the exceptionally cold/mild winters as well as severe droughts. The comparison of the extreme years with the other Polish pine chronologies showed similarities in the years with the anomalous winter conditions. Some extreme years can be associated with the exceptional pluvial conditions; these years are common in the Central European hydroclimatic tree-ring records. The construction of this regional pine chronology enables for the absolute dating of many architectural monuments from investigated region. The application of the new chronology for the dating of local wood can support interpretations of changes in the environment of the Upper Silesian region. In the future it can also be used as the basis for climate reconstruction.


Sign in / Sign up

Export Citation Format

Share Document