scholarly journals Cloud_cci Advanced Very High Resolution Radiometer post meridiem (AVHRR-PM) dataset version 3: 35-year climatology of global cloud and radiation properties

2020 ◽  
Vol 12 (1) ◽  
pp. 41-60 ◽  
Author(s):  
Martin Stengel ◽  
Stefan Stapelberg ◽  
Oliver Sus ◽  
Stephan Finkensieper ◽  
Benjamin Würzler ◽  
...  

Abstract. We present version 3 of the Cloud_cci Advanced Very High Resolution Radiometer post meridiem (AVHRR-PM) dataset, which contains a comprehensive set of cloud and radiative flux properties on a global scale covering the period of 1982 to 2016. The properties were retrieved from AVHRR measurements recorded by the afternoon (post meridiem – PM) satellites of the National Oceanic and Atmospheric Administration (NOAA) Polar Operational Environmental Satellite (POES) missions. The cloud properties in version 3 are of improved quality compared with the precursor dataset version 2, providing better global quality scores for cloud detection, cloud phase and ice water path based on validation results against A-Train sensors. Furthermore, the parameter set was extended by a suite of broadband radiative flux properties. They were calculated by combining the retrieved cloud properties with thermodynamic profiles from reanalysis and surface properties. The flux properties comprise upwelling and downwelling and shortwave and longwave broadband fluxes at the surface (bottom of atmosphere – BOA) and top of atmosphere (TOA). All fluxes were determined at the AVHRR pixel level for all-sky and clear-sky conditions, which will particularly facilitate the assessment of the cloud radiative effect at the BOA and TOA in future studies. Validation of the BOA downwelling fluxes against the Baseline Surface Radiation Network (BSRN) shows a very good agreement. This is supported by comparisons of multi-annual mean maps with NASA's Clouds and the Earth's Radiant Energy System (CERES) products for all fluxes at the BOA and TOA. The Cloud_cci AVHRR-PM version 3 (Cloud_cci AVHRR-PMv3) dataset allows for a large variety of climate applications that build on cloud properties, radiative flux properties and/or the link between them. For the presented Cloud_cci AVHRR-PMv3 dataset a digital object identifier has been issued: https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V003 (Stengel et al., 2019).

2019 ◽  
Author(s):  
Martin Stengel ◽  
Stefan Stapelberg ◽  
Oliver Sus ◽  
Stephan Finkensieper ◽  
Benjamin Würzler ◽  
...  

Abstract. We present version 3 of the Cloud_cci AVHRR-PM dataset which contains a comprehensive set of cloud and radiative flux properties on a global scale covering the period of 1982 to 2016. The properties were retrieved from Advanced Very High Resolution Radiometer (AVHRR) measurements recorded by the afternoon (post meridiem, PM) satellites of the National Oceanic and Atmospheric Administration (NOAA) Polar Operational Environmental Satellites (POES) missions. The cloud properties in version 3 are of improved quality compared with the precursor dataset version 2, providing better global quality scores for cloud detection, cloud phase and ice water path based on validation results against A-Train sensors. Furthermore, the parameter set was extended by a suite of broadband radiative flux properties. They were calculated by combining the retrieved cloud properties with thermodynamic profiles from reanalysis and surface properties. The flux properties comprise upwelling and downwelling, shortwave and longwave broadband fluxes at the surface (bottom-of-atmosphere - BOA) and top-of-atmosphere (TOA). All fluxes were determined at AVHRR pixel level for all-sky and clear-sky conditions, which will particularly facilitate the assessment of the cloud radiative effect at BOA and TOA in future studies. Validation of the BOA downwelling fluxes against the Baseline Surface Radiation Network (BSRN) show a very good agreement. This is supported by comparisons of multi-annual mean maps with NASA's Clouds and the Earth's Radiant Energy System (CERES) products for all fluxes at BOA and TOA. The Cloud_cci AVHRR-PM version 3 dataset allows for a large variety of climate applications that build on cloud properties, radiative flux properties and/or the link between them. For the presented Cloud_cci AVHRR-PMv3 dataset a Digital Object Identifier has been issued: https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V003 (Stengel et al., 2019).


2007 ◽  
Vol 46 (3) ◽  
pp. 249-272 ◽  
Author(s):  
M. Chiriaco ◽  
H. Chepfer ◽  
P. Minnis ◽  
M. Haeffelin ◽  
S. Platnick ◽  
...  

Abstract This study compares cirrus-cloud properties and, in particular, particle effective radius retrieved by a Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)-like method with two similar methods using Moderate-Resolution Imaging Spectroradiometer (MODIS), MODIS Airborne Simulator (MAS), and Geostationary Operational Environmental Satellite imagery. The CALIPSO-like method uses lidar measurements coupled with the split-window technique that uses the infrared spectral information contained at the 8.65-, 11.15-, and 12.05-μm bands to infer the microphysical properties of cirrus clouds. The two other methods, using passive remote sensing at visible and infrared wavelengths, are the operational MODIS cloud products (using 20 spectral bands from visible to infrared, referred to by its archival product identifier MOD06 for MODIS Terra) and MODIS retrievals performed by the Clouds and the Earth’s Radiant Energy System (CERES) team at Langley Research Center (LaRC) in support of CERES algorithms (using 0.65-, 3.75-, 10.8-, and 12.05-μm bands); the two algorithms will be referred to as the MOD06 and LaRC methods, respectively. The three techniques are compared at two different latitudes. The midlatitude ice-clouds study uses 16 days of observations at the Palaiseau ground-based site in France [Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA)], including a ground-based 532-nm lidar and the MODIS overpasses on the Terra platform. The tropical ice-clouds study uses 14 different flight legs of observations collected in Florida during the intensive field experiment known as the Cirrus Regional Study of Tropical Anvils and Cirrus Layers–Florida Area Cirrus Experiment (CRYSTAL-FACE), including the airborne cloud-physics lidar and the MAS. The comparison of the three methods gives consistent results for the particle effective radius and the optical thickness but discrepancies in cloud detection and altitudes. The study confirms the value of an active remote sensing method (CALIPSO like) for the study of subvisible ice clouds, in both the midlatitudes and Tropics. Nevertheless, this method is not reliable in optically very thick tropical ice clouds, because of their particular microphysical properties.


2020 ◽  
Vol 12 (2) ◽  
pp. 305 ◽  
Author(s):  
Tom Akkermans ◽  
Nicolas Clerbaux

The current lack of a long, 30+ year, global climate data record of reflected shortwave top-of-atmosphere (TOA) radiation could be tackled by relying on existing narrowband records from the Advanced Very High Resolution Radiometer (AVHRR) instruments, and transform these measurements into broadband quantities like provided by the Clouds and the Earth’s Radiant Energy System (CERES). This paper presents the methodology of an AVHRR-to-CERES narrowband-to-broadband conversion for shortwave TOA reflectance, including the ready-to-use results in the form of scene-type dependent regression coefficients, allowing a calculation of CERES-like shortwave broadband reflectance from AVHRR channels 1 and 2. The coefficients are obtained using empirical relations in a large data set of collocated, coangular and simultaneous AVHRR-CERES observations, requiring specific orbital conditions for the AVHRR- and CERES-carrying satellites, from which our data analysis uses all available data for an unprecedented observation matching between both instruments. The multivariate linear regressions were found to be robust and well-fitting, as demonstrated by the regression statistics on the calibration subset (80% of data): adjusted R 2 higher than 0.9 and relative RMS residual mostly below 3%, which is a significant improvement compared to previous regressions. Regression models are validated by applying them on a validation subset (20% of data), indicating a good performance overall, roughly similar to the calibration subset, and a negligible mean bias. A second validation approach uses an expanded data set with global coverage, allowing regional analyses. In the error analysis, instantaneous accuracy is quantified at regional scale between 1.8 Wm − 2 and 2.3 Wm − 2 (resp. clear-sky and overcast conditions) at 1 standard deviation (RMS bias). On daily and monthly time scales, these errors correspond to 0.7 and 0.9 Wm − 2 , which is compliant with the GCOS requirement of 1 Wm − 2 .


2021 ◽  
Author(s):  
Archana Devi ◽  
Sreedharan Krishnakumari Satheesh

Abstract. Single Scattering Albedo (SSA) is a leading contributor to the uncertainty in aerosol radiative impact assessments. Therefore accurate information on aerosol absorption is required on a global scale. In this study, we have applied a multi-satellite algorithm to retrieve SSA using the concept of ‘critical optical depth.’ Global maps of SSA were generated following this approach using spatially and temporally collocated data from Clouds and the Earth’s Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on board Terra and Aqua satellites. The method has been validated using the data from aircraft-based measurements of various field campaigns. The retrieval uncertainty is ±0.03 and depends on both the surface albedo and aerosol absorption. Global mean SSA estimated over land and ocean is 0.93 and 0.97, respectively. Seasonal and spatial distribution of SSA over various regions are also presented. The global maps of SSA, thus derived with improved accuracy, provide important input to climate models for assessing the climatic impact of aerosols on regional and global scales.


2019 ◽  
Vol 11 (4) ◽  
pp. 1905-1915 ◽  
Author(s):  
Wenjun Tang ◽  
Kun Yang ◽  
Jun Qin ◽  
Xin Li ◽  
Xiaolei Niu

Abstract. The recent release of the International Satellite Cloud Climatology Project (ISCCP) HXG cloud products and new ERA5 reanalysis data enabled us to produce a global surface solar radiation (SSR) dataset: a 16-year (2000–2015) high-resolution (3 h, 10 km) global SSR dataset using an improved physical parameterization scheme. The main inputs were cloud optical depth from ISCCP-HXG cloud products; the water vapor, surface pressure and ozone from ERA5 reanalysis data; and albedo and aerosol from Moderate Resolution Imaging Spectroradiometer (MODIS) products. The estimated SSR data were evaluated against surface observations measured at 42 stations of the Baseline Surface Radiation Network (BSRN) and 90 radiation stations of the China Meteorological Administration (CMA). Validation against the BSRN data indicated that the mean bias error (MBE), root mean square error (RMSE) and correlation coefficient (R) for the instantaneous SSR estimates at 10 km scale were −11.5 W m−2, 113.5 W m−2 and 0.92, respectively. When the estimated instantaneous SSR data were upscaled to 90 km, its error was clearly reduced, with RMSE decreasing to 93.4 W m−2 and R increasing to 0.95. For daily SSR estimates at 90 km scale, the MBE, RMSE and R at the BSRN were −5.8 W m−2, 33.1 W m−2 and 0.95, respectively. These error metrics at the CMA radiation stations were 2.1 W m−2, 26.9 W m−2 and 0.95, respectively. Comparisons with other global satellite radiation products indicated that our SSR estimates were generally better than those of the ISCCP flux dataset (ISCCP-FD), the global energy and water cycle experiment surface radiation budget (GEWEX-SRB), and the Earth's Radiant Energy System (CERES). Our SSR dataset will contribute to the land-surface process simulations and the photovoltaic applications in the future. The dataset is available at  https://doi.org/10.11888/Meteoro.tpdc.270112 (Tang, 2019).


2016 ◽  
Vol 33 (12) ◽  
pp. 2679-2698 ◽  
Author(s):  
David R. Doelling ◽  
Conor O. Haney ◽  
Benjamin R. Scarino ◽  
Arun Gopalan ◽  
Rajendra Bhatt

AbstractThe Clouds and the Earth’s Radiant Energy System (CERES) project relies on geostationary imager–derived TOA broadband fluxes and cloud properties to account for the regional diurnal fluctuations between the Terra and Aqua CERES and MODIS measurements. The CERES project employs a ray-matching calibration algorithm in order to transfer the Aqua MODIS calibration to the geostationary (GEO) imagers, thereby allowing the derivation of consistent fluxes and cloud retrievals across the 16 GEO imagers utilized in the CERES record. The CERES Edition 4 processing scheme grants the opportunity to recalibrate the GEO record using an improved GEO/MODIS all-sky ocean ray-matching algorithm. Using a graduated angle matching method, which is most restrictive for anisotropic clear-sky ocean radiances and least restrictive for isotropic bright cloud radiances, reduces the bidirectional bias while preserving the dynamic range. Furthermore, SCIAMACHY hyperspectral radiances are used to account for both the solar incoming and Earth-reflected spectra in order to correct spectral band differences. As a result, the difference between the linear regression offset and the maintained GEO space count was reduced, and the calibration slopes computed from the linear fit and the regression through the space count agreed to within 0.4%. A deep convective cloud (DCC) ray-matching algorithm is also presented. The all-sky ocean and DCC ray-matching timeline gains are within 0.7% of one another. Because DCC are isotropic and the brightest, Earth targets with near-uniform visible spectra, the temporal standard error of GEO imager gains, are reduced by up to 60% from that of all-sky ocean targets.


2021 ◽  
Author(s):  
Myroslava Lesiv ◽  
Dmitry Schepaschenko ◽  
Martina Dürauer ◽  
Marcel Buchhorn ◽  
Ivelina Georgieva ◽  
...  

<p>Spatially explicit information on forest management at a global scale is critical for understanding the current status of forests for sustainable forest management and restoration. Whereas remotely sensed based datasets, developed by applying ML and AI algorithms, can successfully depict tree cover and other land cover types, it has not yet been used to depict untouched forest and different degrees of forest management. We show for the first time that with sufficient training data derived from very high-resolution imagery a differentiation within the tree cover class of various levels of forest management is possible.</p><p>In this session, we would like to present our approach for labeling forest related training data by using Geo-Wiki application (https://www.geo-wiki.org/). Moreover, we would like to share a new open global training data set on forest management we collected from a series of Geo-Wiki campaigns. In February 2019, we organized an expert workshop to (1) discuss the variety of forest management practices that take place in different parts of the world; (2) generalize the definitions for the application at global scale; (3) finalize the Geo-Wiki interface for the crowdsourcing campaigns; and (4) build a data set of control points (or the expert data set), which we used later to monitor the quality of the crowdsourced contributions by the volunteers. We involved forest experts from different regions around the world to explore what types of forest management information could be collected from visual interpretation of very high-resolution images from Google Maps and Microsoft Bing, in combination with Sentinel time series and Normalized Difference Vegetation Index (NDVI) profiles derived from Google Earth Engine (GEE). Based on the results of this analysis, we expanded these campaigns by involving a broader group of participants, mainly people recruited from remote sensing, geography and forest research institutes and universities.</p><p>In total, we collected forest data for approximately 230 000 locations globally. These data are of sufficient density and quality and therefore could be used in many ML and AI applications for forests at regional and local scale.  We also provide an example of ML application, a remotely sensed based global forest management map at a 100 m resolution (PROBA-V) for the year 2015. It includes such classes as intact forests, forests with signs of human impact, including clear cuts and logging, replanted forest, woody plantations with a rotation period up to 15 years, oil palms and agroforestry. The results of independent statistical validation show that the map’s overall accuracy is 81%.</p>


2020 ◽  
Vol 12 (6) ◽  
pp. 929 ◽  
Author(s):  
Nicolas Clerbaux ◽  
Tom Akkermans ◽  
Edward Baudrez ◽  
Almudena Velazquez Blazquez ◽  
William Moutier ◽  
...  

Data from the Advanced Very High Resolution Radiometer (AVHRR) have been used to create several long-duration data records of geophysical variables describing the atmosphere and land and water surfaces. In the Climate Monitoring Satellite Application Facility (CM SAF) project, AVHRR data are used to derive the Cloud, Albedo, and Radiation (CLARA) climate data records of radiation components (i.a., surface albedo) and cloud properties (i.a., cloud cover). This work describes the methodology implemented for the additional estimation of the Outgoing Longwave Radiation (OLR), an important Earth radiation budget component, that is consistent with the other CLARA variables. A first step is the estimation of the instantaneous OLR from the AVHRR observations. This is done by regressions on a large database of collocated observations between AVHRR Channel 4 (10.8 µm) and 5 (12 µm) and the OLR from the Clouds and Earth’s Radiant Energy System (CERES) instruments. We investigate the applicability of this method to the first generation of AVHRR instrument (AVHRR/1) for which no Channel 5 observation is available. A second step concerns the estimation of daily and monthly OLR from the instantaneous AVHRR overpasses. This step is especially important given the changes in the local time of the observations due to the orbital drift of the NOAA satellites. We investigate the use of OLR in the ERA5 reanalysis to estimate the diurnal variation. The developed approach proves to be valuable to model the diurnal change in OLR due to day/night time warming/cooling over clear land. Finally, the resulting monthly mean AVHRR OLR product is intercompared with the CERES monthly mean product. For a typical configuration with one morning and one afternoon AVHRR observation, the Root Mean Square (RMS) difference with CERES monthly mean OLR is about 2 Wm−2 at 1° × 1° resolution. We quantify the degradation of the OLR product when only one AVHRR instrument is available (as is the case for some periods in the 1980s) and also the improvement when more instruments are available (e.g., using METOP-A, NOAA-15, NOAA-18, and NOAA-19 in 2012). The degradation of the OLR product from AVHRR/1 instruments is also quantified, which is done by “masking” the Channel 5 observations.


2020 ◽  
Author(s):  
Coda Phillips ◽  
Michael Foster ◽  
Andrew Heidinger

<p>Since 1978, an Advanced Very-High-Resolution Radiometer (AVHRR) has flown onboard 17 polar-orbiting satellites. Together, they are the longest global record from a homogeneous set of satellite sensors. The Pathfinder Atmosphere’s Extended (PATMOS-x) dataset is a long-term cloud record derived from the AVHRR radiances, and suitable for climate analysis. It has demonstrated intersensor stability and has been rigorously compared with other cloud datasets.</p><p>However, the AVHRR alone has only limited spectral information, so cloud detection during nighttime or over ice is challenging. Therefore, performance degrades over regions with extreme diurnal patterns or low temperatures such as the poles, despite our interest.</p><p>The next production version of PATMOS-x will include numerous algorithmic changes as well as the use of High-resolution Infrared Radiation Sounder (HIRS) spectral channels to improve detection accuracy in previously difficult conditions. The low-resolution HIRS soundings are upsampled to match the AVHRR pixels through an edge-preserving process called “fusion”. The higher-resolution AVHRR imagery guides the upsampling and the resulting combination is spectrally consistent with the AVHRR and has a high spatial resolution.</p><p>For cloud detection, the difference between the AVHRR and HIRS 11μm and HIRS 6.7μm brightness temperatures has been added as a feature in the naive Bayesian cloud detector. The effect on cloud precision is seen especially in the Antarctic where false-positive cloud detections have decreased dramatically.</p><p>Other cloud properties can be improved with the new spectral channels. For example, the new cloud phase algorithm uses the HIRS 6.7μm to determine cloud phase and the AVHRR and HIRS 11μm-13.3μm beta ratio identifies overlapping clouds. Also, the 11μm, 12μm, and HIRS 13.3μm are used in the new cloud height algorithm.</p><p>We report on the development of this new version of the PATMOS-x cloud climate dataset, and the methods used to calibrate and homogenize the participating sensors. Finally, observed trends in the improved dataset will be examined and related to the old dataset. In particular, attention will be given to whether high-latitude analysis of climatic trends is finally possible on the new dataset.</p>


2012 ◽  
Vol 3 (1) ◽  
pp. 73-90 ◽  
Author(s):  
T. Masters

Abstract. A detailed analysis is presented in order to determine the sensitivity of the estimated short-term cloud feedback to choices of temperature datasets, sources of top-of-atmosphere (TOA) radiative flux data, and temporal averaging. It is shown that the results of a previous analysis, which suggested a likely positive value for the short-term cloud feedback, depended upon combining radiative fluxes from satellite and reanalysis data when determining the cloud radiative forcing (CRF). These results are contradicted when ΔCRF is derived from NASA's Clouds and Earth's Radiant Energy System (CERES) all-sky and clear-sky measurements over the same period, resulting in a likely negative feedback. The differences between the radiative flux data sources are thus explored, along with the potential problems with each method. Overall, there is little correlation between the changes in the CRF and surface temperatures on these timescales, suggesting that the net effect of clouds varies during this time period quite apart from global temperature changes. Attempts to diagnose long-term cloud feedbacks in this manner are unlikely to be robust.


Sign in / Sign up

Export Citation Format

Share Document