scholarly journals G2DC-PL+ A gridded 2 km daily climate dataset for the union of the Polish territory and the Vistula and Odra basins

2020 ◽  
Author(s):  
Mikołaj Piniewski ◽  
Mateusz Szcześniak ◽  
Ignacy Kardel ◽  
Somsubhra Chattopadhyay ◽  
Tomasz Berezowski

Abstract. G2DC-PL+ – a gridded 2 km daily climate dataset for the union of the Polish territory and the Vistula and Odra basins is an update and extension of the CHASE-PL Forcing Data – Gridded Daily Precipitation & Temperature Dataset – 5 km (CPLFD-GDPT5). The latter was the first publicly available, high-resolution climate forcing dataset in Poland, used for a range of purposes including hydrological modelling and bias correction of climate projections. While the spatial coverage of the new dataset remained the same, it has undergone several major changes: (1) the time coverage was increased from 1951–2013 to 1951–2019; (2) its spatial resolution increased from 5 to 2 km; (3) the number of stations used for interpolation of temperature and precipitation approximately doubled; (4) in addition to precipitation and temperature, the dataset consists of relative humidity and wind speed data. The main purpose for developing this product was the need for long-term areal climate data for earth-system modelling, and particularly hydrological modelling. Geostatistical methods (kriging) were used for interpolation of the studied climate variables. The kriging cross-validation revealed improved performance for precipitation compared to the original dataset expressed by the median of the root mean squared errors standardised by standard deviation of observations (0.59 vs. 0.79). Kriging errors were negatively correlated with station density only for the period 1951–1970. RMSEsd values were equal to 0.52 and 0.4 for minimum and maximum temperature, respectively, suggesting a small to moderate improvement over the original dataset. Relative humidity and wind speed exhibited lower performance, with median RMSEsd equal to 0.82 and 0.87, respectively. The dataset is openly available from the 4TU Centre for Research Data at https://doi.org/10.4121/uuid:a3bed3b8-e22a-4b68-8d75-7b87109c9feb (Piniewski et al., 2020).

2021 ◽  
Vol 13 (3) ◽  
pp. 1273-1288
Author(s):  
Mikołaj Piniewski ◽  
Mateusz Szcześniak ◽  
Ignacy Kardel ◽  
Somsubhra Chattopadhyay ◽  
Tomasz Berezowski

Abstract. G2DC-PL+, a gridded 2 km daily climate dataset for the union of the Polish territory and the Vistula and Odra basins, is an update and extension of the CHASE-PL Forcing Data – Gridded Daily Precipitation and Temperature Dataset – 5 km (CPLFD-GDPT5). The latter was the first publicly available, high-resolution climate forcing dataset in Poland, used for a range of purposes including hydrological modelling and bias correction of climate projections. While the spatial coverage of the new dataset remained the same, it has undergone several major changes: (1) the time coverage was increased from 1951–2013 to 1951–2019; (2) its spatial resolution increased from 5 to 2 km; (3) the number of stations used for interpolation of temperature and precipitation approximately doubled; and (4) in addition to precipitation and temperature, the dataset consists of relative humidity and wind speed data. The main purpose for developing this product was the need for long-term areal climate data for earth-system modelling, and particularly hydrological modelling. Geostatistical methods (kriging) were used for interpolation of the studied climate variables. The kriging cross-validation revealed improved performance for precipitation compared to the original dataset expressed by the median of the root mean squared errors standardized by standard deviation of observations (0.59 vs. 0.79). Kriging errors were negatively correlated with station density only for the period 1951–1970. Values of the root mean squared error normalized to the standard deviation (RMSEsd) were equal to 0.52 and 0.4 for minimum and maximum temperature, respectively, suggesting a small to moderate improvement over the original dataset. Relative humidity and wind speed exhibited lower performance, with median RMSEsd equal to 0.82 and 0.87, respectively. The dataset is openly available from the 4TU Centre for Research Data at https://doi.org/10.4121/uuid:a3bed3b8-e22a-4b68-8d75-7b87109c9feb (Piniewski et al., 2020).


2015 ◽  
Vol 8 (2) ◽  
pp. 1021-1060 ◽  
Author(s):  
T. Berezowski ◽  
M. Szcześniak ◽  
I. Kardel ◽  
R. Michałowski ◽  
T. Okruszko ◽  
...  

Abstract. The CHASE-PL Forcing Data-Gridded Daily Precipitation and Temperature Dataset-5 km (CPLFD-GDPT5) consists of 1951–2013 daily minimum and maximum air temperatures and precipitation totals interpolated onto a 5 km grid based on daily meteorological observations from Institute of Meteorology and Water Management (IMGW-PIB; Polish stations), Deutscher Wetterdienst (DWD, German and Czech stations), ECAD and NOAA-NCDC (Slovak, Ukrainian and Belarus stations). The main purpose for constructing this product was the need for long-term aerial precipitation and temperature data for earth-system modelling, especially hydrological modelling. The spatial coverage is the union of Vistula and Odra basin and Polish territory. The number of available meteorological stations for precipitation and temperature varies in time from about 100 for temperature and 300 for precipitation in 1950 up to about 180 for temperature and 700 for precipitation in 1990. The precipitation dataset was corrected for snowfall and rainfall under-catch with the Richter method. The interpolation methods were: kriging with elevation as external drift for temperatures and indicator kriging combined with universal kriging for precipitation. The kriging cross-validation revealed low root mean squared errors expressed as a fraction of standard deviation (SD): 0.54 and 0.47 for minimum and maximum temperature, respectively and 0.79 for precipitation. The correlation scores were 0.84 for minimum temperatures, 0.88 for maximum temperatures and 0.65 for precipitation. The CPLFD-GDPT5 product is consistent with 1971–2000 climatic data published by IMGW-PIB. We also confirm good skill of the product for hydrological modelling by performing an application using the Soil and Water Assessment Tool (SWAT) in the Vistula and Odra basins. Link to the dataset: http://data.3tu.nl/repository/uuid:e939aec0-bdd1-440f-bd1e-c49ff10d0a07


2016 ◽  
Vol 8 (1) ◽  
pp. 127-139 ◽  
Author(s):  
Tomasz Berezowski ◽  
Mateusz Szcześniak ◽  
Ignacy Kardel ◽  
Robert Michałowski ◽  
Tomasz Okruszko ◽  
...  

Abstract. The CHASE-PL (Climate change impact assessment for selected sectors in Poland) Forcing Data–Gridded Daily Precipitation & Temperature Dataset–5 km (CPLFD-GDPT5) consists of 1951–2013 daily minimum and maximum air temperatures and precipitation totals interpolated onto a 5 km grid based on daily meteorological observations from the Institute of Meteorology and Water Management (IMGW-PIB; Polish stations), Deutscher Wetterdienst (DWD, German and Czech stations), and European Climate Assessment and Dataset (ECAD) and National Oceanic and Atmosphere Administration–National Climatic Data Center (NOAA-NCDC) (Slovak, Ukrainian, and Belarusian stations). The main purpose for constructing this product was the need for long-term aerial precipitation and temperature data for earth-system modelling, especially hydrological modelling. The spatial coverage is the union of the Vistula and Oder basins and Polish territory. The number of available meteorological stations for precipitation and temperature varies in time from about 100 for temperature and 300 for precipitation in the 1950s up to about 180 for temperature and 700 for precipitation in the 1990s. The precipitation data set was corrected for snowfall and rainfall under-catch with the Richter method. The interpolation methods were kriging with elevation as external drift for temperatures and indicator kriging combined with universal kriging for precipitation. The kriging cross validation revealed low root-mean-squared errors expressed as a fraction of standard deviation (SD): 0.54 and 0.47 for minimum and maximum temperature, respectively, and 0.79 for precipitation. The correlation scores were 0.84 for minimum temperatures, 0.88 for maximum temperatures, and 0.65 for precipitation. The CPLFD-GDPT5 product is consistent with 1971–2000 climatic data published by IMGW-PIB. We also confirm good skill of the product for hydrological modelling by performing an application using the Soil and Water Assessment Tool (SWAT) in the Vistula and Oder basins. Link to the data set: doi:10.4121/uuid:e939aec0-bdd1-440f-bd1e-c49ff10d0a07.


2015 ◽  
Vol 33 (3) ◽  
pp. 477 ◽  
Author(s):  
Nadja Gomes Machado ◽  
Marcelo Sacardi Biudes ◽  
Carlos Alexandre Santos Querino ◽  
Victor Hugo De Morais Danelichen ◽  
Maísa Caldas Souza Velasque

ABSTRACT. Cuiab´a is located on the border of the Pantanal and Cerrado, in Mato Grosso State, which is recognized as one of the biggest agricultural producers of Brazil. The use of natural resources in a sustainable manner requires knowledge of the regional meteorological variables. Thus, the objective of this study was to characterize the seasonal and interannual pattern of meteorological variables in Cuiab´a. The meteorological data from 1961 to 2011 were provided by the Instituto Nacional de Meteorologia (INMET – National Institute of Meteorology). The results have shown interannual and seasonal variations of precipitation, solar radiation, air temperature and relative humidity, and wind speed and direction, establishing two main distinct seasons (rainy and dry). On average, 89% of the rainfall occurred in the wet season. The annual average values of daily global radiation, mean, minimum and maximum temperature and relative humidity were 15.6 MJ m–2 y–1, 27.9◦C, 23.0◦C, 30.0◦C and 71.6%, respectively. Themaximum temperature and the wind speed had no seasonal pattern. The wind speed average decreased in the NWdirectionand increased in the S direction.Keywords: meteorological variables, climatology, ENSO. RESUMO. Cuiabá está localizado na fronteira do Pantanal com o Cerrado, no Mato Grosso, que é reconhecido como um dos maiores produtores agrícolas do Brasil. A utilização dos recursos naturais de forma sustentável requer o conhecimento das variáveis meteorológicas em escala regional. Assim, o objetivo deste estudo foi caracterizar o padrão sazonal e interanual das variáveis meteorológicas em Cuiabá. Os dados meteorológicos de 1961 a 2011 foram fornecidos pelo Instituto Nacional de Meteorologia (INMET). Os resultados mostraram variações interanuais e sazonais de precipitação, radiação solar, temperatura e umidade relativa do ar e velocidade e direção do vento, estabelecendo duas principais estações distintas (chuvosa e seca). Em média, 89% da precipitação ocorreu na estação chuvosa. Os valores médios anuais de radiação diária global, temperatura do ar média, mínima e máxima e umidade relativa do ar foram 15,6 MJ m–2 y–1, 27,9◦C, 23,0◦C, 30,0◦C e 71,6%, respectivamente. A temperatura máxima e a velocidade do vento não tiveram padrão sazonal. A velocidade média do vento diminuiu na direção NW e aumentou na direção S.Palavras-chave: variáveis meteorológicas, climatologia, ENOS.


2020 ◽  
Author(s):  
Congying Han

<p><strong>Spatiotemporal Variability of Potential Evaporation in Heihe River Basin Influenced by Irrigation </strong></p><p>Congying Han<sup>1,2</sup>, Baozhong Zhang<sup>1,2</sup>, Songjun Han<sup>1,2</sup></p><p><sup>1</sup> State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.</p><p><sup>2</sup> National Center of Efficient Irrigation Engineering and Technology Research-Beijing, Beijing 100048, China.</p><p>Corresponding author: Baozhong Zhang ([email protected])</p><p><strong>Abstract: </strong>Potential evaporation is a key factor in crop water requirement estimation and agricultural water resource planning. The spatial pattern and temporal changes of potential evaporation calculated by Penman equation (E<sub>Pen</sub>) (1970-2017) in Heihe River Basin (HRB), Northwest China were evaluated by using data from 10 meteorological stations, with a serious consideration of the influences of irrigation development. Results indicated that the spatial pattern of annual E<sub>Pen</sub> in HRB was significantly different, among which the E<sub>Pen</sub> of agricultural sites (average between 1154 mm and 1333 mm) was significantly higher than that of natural sites (average between 794 mm and 899 mm). Besides, the coefficient of spatial variation of the aerodynamic term (E<sub>aero</sub>) was 0.4, while that of the radiation term (E<sub>rad</sub>) was 0.09. The agricultural irrigation water withdrawal increased annually before 2000, but decreased significantly after 2000 which was influenced by the agricultural development and the water policy. Coincidentally, the annual variation of E<sub>pen</sub> in agricultural sites decreased at -40 mm/decade in 1970-2000 but increased at 60 mm/decade in 2001-2017, while that in natural sites with little influence of irrigation, only decreased at -0.5mm/decade in 1970-2000 but increased at 11 mm/decade in 2001-2017. So it was obvious that irrigation influenced E<sub>pen </sub>significantly and the change of E<sub>pen</sub> was mainly caused by the aerodynamic term. The analysis of the main meteorological factors that affect E<sub>pen</sub> showed that wind speed had the greatest impact on E<sub>pen</sub> of agricultural sites, followed by relative humidity and average temperature, while the meteorological factors that had the greatest impact on E<sub>pen</sub> of natural sites were maximum temperature, followed by wind speed and relative humidity.</p>


2020 ◽  
Author(s):  
Maria Francisca Cardell ◽  
Arnau Amengual ◽  
Romualdo Romero

<p>Europe and particularly, the Mediterranean countries, are among the most visited tourist destinations worldwide, while it is also recognized as one of the most sensitive regions to climate change. Climate is a key resource and even a limiting factor for many types of tourism. Owing to climate change, modified patterns of atmospheric variables such as temperature, rainfall, relative humidity, hours of sunshine and wind speed will likely affect the suitability of the European destinations for certain outdoor leisure activities.</p><p>Perspectives on the future of second-generation climate indices for tourism (CIT) that depend on thermal, aesthetic and physical facets are derived using model projected daily atmospheric data and present climate “observations”. Specifically, daily series of 2-m maximum temperature, accumulated precipitation, 2-m relative humidity, mean cloud cover and 10-m wind speed from ERA-5 reanalysis are used to derive the present climate potential. For projections, the same daily variables have been obtained from a set of regional climate models (RCMs) included in the European CORDEX project, considering the rcp8.5 future emissions scenario. The adoption of a multi-model ensemble strategy allows quantifying the uncertainties arising from the model errors and the GCM-derived boundary conditions. To properly derive CITs at local scale, a quantile–quantile adjustment has been applied to the simulated regional scenarios. The method detects changes in the continuous CIT cumulative distribution functions (CDFs) between the recent past and successive time slices of the simulated climate and applies these changes, once calibrated, to the observed CDFs. </p><p>Assessments on the future climate potential for several types of tourist activities in Europe (i.e., sun, sea and sand (3S) tourism, cycling, cultural, football, golf, nautical and hiking) will be presented by applying suitable quantitative indicators of CIT evolutions adapted to regional contexts. It is expected that such kind of information will ultimately benefit the design of mitigation and adaptation strategies of the tourist sector.</p>


2017 ◽  
Author(s):  
Philip D. Jones ◽  
Colin Harpham ◽  
Alberto Troccoli ◽  
Benoit Gschwind ◽  
Thierry Ranchin ◽  
...  

Abstract. The construction of a bias-adjusted dataset of climate variables at the near surface using ERA-Interim Reanalysis is presented. A number of different bias-adjustment approaches have been proposed. Here we modify the parameters of different distributions (depending on the variable), adjusting those calculated from ERA-Interim to those based on gridded station or direct station observations. The variables are air temperature, dewpoint temperature, precipitation (daily only), solar radiation, wind speed and relative humidity, available at either 3 or 6 h timescales over the period 1979-2014. This dataset is available to anyone through the Climate Data Store (CDS) of the Copernicus Climate Change Data Store (C3S), and can be accessed at present from (ftp://ecem.climate.copernicus.eu). The benefit of performing bias-adjustment is demonstrated by comparing initial and bias-adjusted ERA-Interim data against observations.


2015 ◽  
Vol 17 (1) ◽  
pp. 175-185

<div> <p>The present study analyses future climate uncertainty for the 21st century over Tamilnadu state for six weather parameters: solar radiation, maximum temperature, minimum temperature, relative humidity, wind speed and rainfall. The climate projection data was dynamically downscaled using high resolution regional climate models, PRECIS and RegCM4 at 0.22&deg;x0.22&deg; resolution. PRECIS RCM was driven by HadCM3Q ensembles (HQ0, HQ1, HQ3, HQ16) lateral boundary conditions (LBCs) and RegCM4 driven by ECHAM5 LBCs for 130 years (1971-2100). The deviations in weather variables between 2091-2100 decade and the base years (1971-2000) were calculated for all grids of Tamilnadu for ascertaining the uncertainty. These deviations indicated that all model members projected no appreciable difference in relative humidity, wind speed and solar radiation. The temperature (maximum and minimum) however showed a definite increasing trend with 1.8 to 4.0&deg;C and 2.0 to 4.8&deg;C, respectively. The model members for rainfall exhibited a high uncertainty as they projected high negative and positive deviations (-379 to 854 mm). The spatial representation of maximum and minimum temperature indicated a definite rhythm of increment from coastal area to inland. However, variability in projected rainfall was noticed.</p> </div> <p>&nbsp;</p>


MAUSAM ◽  
2022 ◽  
Vol 63 (3) ◽  
pp. 377-390
Author(s):  
A.K. JASWAL ◽  
S.R. BHAMBAK ◽  
M.K. GUJAR ◽  
S.H. MOHITE ◽  
S. ANANTHARAMAN ◽  
...  

Climate normals are used to describe the average climatic conditions of a particular place and are computed by National Meteorological Services of all countries. The World Meteorological Organization (WMO) recommends that all countries prepare climate normals for the 30-year periods ending in 1930, 1960, 1990 and so on, for which the WMO World Climate Normals are published. Recently, Climatological Normals for the period 1961-1990 have been prepared by India Meteorological Department (IMD) which will change the baseline of comparison from 1951-1980. In this paper, preparation of the 30-year Climatological Normals of India for the period 1961 to 1990 and spatial patterns of differences of annual means of temperatures, relative humidity, clouds, rainfall and wind speed from the previous normals (1951-1980) are documented.The changes from earlier climatological normals indicate increase in annual means of maximum temperature, relative humidity and decrease in annual means of minimum temperature, cloud amount, rainfall, rainy days and wind speed over large parts of the country during 1961-1990. The spatial patterns of changes in dry bulb temperatures and relative humidity are complementary over most parts of the country. Compared with 1951-1980 climatology, there are large scale decreases in annual mean rainfall, rainy days and wind speed over most parts of the country during 1961-1990. The decrease in wind speed may be partly due to changes in exposure conditions of observatories due to urbanization.


MAUSAM ◽  
2022 ◽  
Vol 73 (1) ◽  
pp. 173-180
Author(s):  
NAVNEET KAUR ◽  
M.J. SINGH ◽  
SUKHJEET KAUR

This paper aims to study the long-term trends in different weather parameters, i.e., temperature, rainfall, rainy days, sunshine hours, evaporation, relative humidity and temperature over Lower Shivalik foothills of Punjab. The daily weather data of about 35 years from agrometeorological observatory of Regional Research Station Ballowal Saunkhri representing Lower Shivalik foothills had been used for trend analysis for kharif (May - October), rabi (November - April), winter (January - February), pre-monsoon (March - May), monsoon (June - September) and post monsoon (October - December) season. The linear regression method has been used to estimate the magnitude of change per year and its coefficient of determination, whose statistical significance was checked by the F test. The annual maximum temperature, morning and evening relative humidity has increased whereas rainfall, evaporation sunshine hours and wind speed has decreased significantly at this region. No significant change in annual minimum temperature and diurnal range has been observed. Monthly maximum temperature revealed significant increase except January, June and December, whereas, monthly minimum temperature increased significantly for February, March and October and decreased for June. Among different seasons, maximum temperature increased significantly for all seasons except winter season, whereas, minimum temperature increased significantly for kharif and post monsoon season only. The evaporation, sunshine hours and wind speed have also decreased and relative humidity decreased significantly at this region. Significant reduction in kharif, monsoon and post monsoon rainfall has been observed at Lower Shivalik foothills. As the region lacks assured irrigation facilities so decreasing rainfall and change in the other weather parameters will have profound effects on the agriculture in this region so there is need to develop climate resilient agricultural technologies.


Sign in / Sign up

Export Citation Format

Share Document