scholarly journals The African Database of Hydrometric Indices (ADHI)

2020 ◽  
Author(s):  
Yves Tramblay ◽  
Nathalie Rouché ◽  
Jean-Emmanuel Paturel ◽  
Gil Mahé ◽  
Jean-François Boyer ◽  
...  

Abstract. The African continent is probably the one with the lowest density of hydrometric stations currently measuring river discharge, despite the fact that the number of operating stations was quite important until the 70s. This new African Database of Hydrometric Indices (ADHI) is compiling data from different sources carefully checked for quality control. It includes about 1500 stations with at least 10 years of daily discharge data over the period 1950–2018. The average record length is 19 years and for over 100 stations complete records are available over 50 years. With this dataset spanning most regions of the African continent, several hydrometric indices have been computed, representing mean flow characteristics and extremes (low flows and floods), and are made accessible to the scientific community. The database will be updated on a regular basis to include more hydrometric stations and longer time series of river discharge. The ADHI database is available for download at: https://doi.org/10.23708/LXGXQ9 (Tramblay and Rouché, 2020).

2021 ◽  
Vol 13 (4) ◽  
pp. 1547-1560
Author(s):  
Yves Tramblay ◽  
Nathalie Rouché ◽  
Jean-Emmanuel Paturel ◽  
Gil Mahé ◽  
Jean-François Boyer ◽  
...  

Abstract. The African continent is probably the one with the lowest density of hydrometric stations currently measuring river discharge despite the fact that the number of operating stations was quite important until the 1970s. This new African Database of Hydrometric Indices (ADHI) provides a wide range of hydrometric indices and hydrological signatures computed from different sources of data after a quality control. It includes 1466 stations with at least 10 years of daily discharge data over the period 1950–2018. The average record length is 33 years, and 131 stations have complete records over 50 years. With this new dataset spanning most climatic regions of the African continent, several hydrometric indices have been computed, representing mean flow characteristics and extremes (low flows and floods), and are accessible to the scientific community. The database will be updated on a regular basis to include more hydrometric stations and longer time series of river discharge. The ADHI is available for download at: https://doi.org/10.23708/LXGXQ9 (Tramblay and Rouché, 2020).


2021 ◽  
Author(s):  
Nathalie Rouché ◽  
Yves Tramblay ◽  
Jean-Emmanuel Paturel ◽  
Gil Mahé ◽  
Jean-François Boyer ◽  
...  

<p>The African continent is probably the one with the lowest density of hydrometric stations currently measuring river discharge, despite the fact that the number of stations was quite important until the 70s. In addition, there is a major issue of data availability, since the different existing datasets are scattered across vast regions, heterogeneous and often with a large amount of missing data in the time series. The aim of this African Dataset of Hydrometric Indices (ADHI) is to provide a set of hydrometric indices computed from an unprecedented large set of daily discharge data in Africa. The ADHI database is based on a new streamflow dataset of 1466 gauging stations with an average record length of 33 years and for over 100 stations complete records are available over 50 years. ADHI is compiling data from different sources carefully checked, based on the historical databases of ORSTOM / IRD and the GRDC, including also other contributions from different countries and basin agencies. The criterion for a station to be included in ADHI is to have a minimum of 10 full years of daily discharge data between 1950 and 2018 with less than 5% missing data. Some time series originating from different sources were concatenated, after making sure the rating curves applied on the different time periods to compute river discharge were similar. Data records were scrutinized to identify suspicious discharge records and time periods where gap-filling methods have been applied to the original records. The selected stations are spread across the whole African continent, with the highest density in Western and Southern Africa and the lowest density in Eastern Africa. They are representative of most of the climate zones of Africa according the Köppen-Geiger climate classification. From this dataset, a large range of hydrological indices and flow signatures have been computed and made available to the scientific community (https://doi.org/10.23708/LXGXQ9). They are representing mean flow characteristics and extremes (low flows and floods) but also catchment characteristics, allowing to study the long-term evolution of hydrology in Africa and support the modelling efforts that aim at reducing the vulnerability of African countries to hydro-climatic variability.</p>


2007 ◽  
Vol 4 (6) ◽  
pp. 4125-4173 ◽  
Author(s):  
M. Hunger ◽  
P. Döll

Abstract. This paper investigates the value of observed river discharge data for global-scale hydrological modeling of a number of flow characteristics that are required for assessing water resources, flood risk and habitat alteration of aqueous ecosystems. An improved version of WGHM (WaterGAP Global Hydrology Model) was tuned in a way that simulated and observed long-term average river discharges at each station become equal, using either the 724-station dataset (V1) against which former model versions were tuned or a new dataset (V2) of 1235 stations and often longer time series. WGHM is tuned by adjusting one model parameter (γ) that affects runoff generation from land areas, and, where necessary, by applying one or two correction factors, which correct the total runoff in a sub-basin (areal correction factor) or the discharge at the station (station correction factor). The study results are as follows. (1) Comparing V2 to V1, the global land area covered by tuning basins increases by 5%, while the area where the model can be tuned by only adjusting γ increases by 8% (546 vs. 384 stations). However, the area where a station correction factor (and not only an areal correction factor) has to be applied more than doubles (389 vs. 93 basins), which is a strong drawback as use of a station correction factor makes discharge discontinuous at the gauge and inconsistent with runoff in the basin. (2) The value of additional discharge information for representing the spatial distribution of long-term average discharge (and thus renewable water resources) with WGHM is high, particularly for river basins outside of the V1 tuning area and for basins where the average sub-basin area has decreased by at least 50% in V2 as compared to V1. For these basins, simulated long-term average discharge would differ from the observed one by a factor of, on average, 1.8 and 1.3, respectively, if the additional discharge information were not used for tuning. The value tends to be higher in semi-arid and snow-dominated regions where hydrological models are less reliable than in humid areas. The deviation of the other simulated flow characteristics (e.g. low flow, inter-annual variability and seasonality) from the observed values also decreases significantly, but this is mainly due to the better representation of average discharge but not of variability. (3) The optimal sub-basin size for tuning depends on the modeling purpose. On the one hand, small basins between 9000 and 20 000 km2 show a much stronger improvement in model performance due to tuning than the larger basins, which is related to the lower model performance (with and without tuning), with basins over 60 000 km2 performing best. On the other hand, tuning of small basins decreases model consistency, as almost half of them require a station correction factor.


Author(s):  
Ganiyu Titilope Oyerinde ◽  
Agnide E. Lawin ◽  
Oluwafemi E. Adeyeri

Abstract The Niger basin have experienced historical drought episodes and floods in recent times. Reliable hydrological modelling has been hampered by missing values in daily river discharge data. We assessed the potential of using the Multivariate Imputation by Chained Equations (MICE) to estimate both continuous and discontinuous daily missing data across different spatial scales in the Niger basin. The study was conducted on 22 discharge stations that have missing data ranging from 2% to 70%. Four efficiency metrics were used to determine the effectiveness of MICE. The Flow Duration Curves (FDC) of observed and filled data were compared to determine how MICE captured the discharge patterns. Mann-Kendall, Modified Mann-Kendall, Pettit and Sen's Slope were used to assess the complete discharge trends using the gap-filled data. Results shows that MICE near perfectly filled the missing discharge data with Nash-Sutcliffe Efficiency (NSE) range of 0.94–0.99 for the calibration (1992–1994) period. Good fits were obtained between FDC of observed and gap-filled data in all considered stations. All the catchments showed significantly increasing discharge trend since 1990s after gap filling. Consequently, the use of MICE in handling missing data challenges across spatial scales in the Niger basin was proposed.


2020 ◽  
Author(s):  
Rossella Belloni ◽  
Stefania Camici ◽  
Angelica Tarpanelli

<p>In view of recent dramatic floods and drought events, the detection of trends in the frequency and magnitude of long time series of flood data is of scientific interest and practical importance. It is essential in many fields, from climate change impact assessment to water resources management, from flood forecasting to drought monitoring, for the planning of future water resources and flood protection systems. <br>To detect long-term changes in river discharge a dense, in space and time, network of monitoring stations is required. However, ground hydro-meteorological monitoring networks are often missing or inadequate in many parts of the world and the global supply of the available river discharge data is often restricted, preventing to identify trends over large areas.  <br>The most direct method of deriving such information on a global scale involves satellite earth observation. Over the last two decades, the growing availability of satellite sensors, and the results so far obtained in the estimation of river discharge from the monitoring of the water level through satellite radar altimetry has fostered the interest on this subject.  <br>Therefore, in the attempt to overcome the lack of long continuous observed time series, in this study satellite altimetry water level data are used to set-up a consistent, continuous and up-to-date daily discharge dataset for different sites across the world. Satellite-derived water levels provided by publicly available datasets (Podaac, Dahiti, River& Lake, Hydroweb and Theia) are used along with available ground observed river discharges to estimate rating curves. Once validated, the rating curves are used to fill and extrapolate discharge data over the whole period of altimetry water level observations. The advantage of using water level observations provided by the various datasets allowed to obtain discharge time series with improved spatio-temporal coverages and resolutions, enabling to extend the study on a global scale and to efficiently perform the analysis even for small to medium-sized basins.  <br>Long continuous discharge time series so obtained are used to perform a global trend analysis on extreme flood and drought events. Specifically, annual maximum discharge and peak-over threshold values are extracted from the simulated daily discharge time series, as proxy variables of independent flood events. For flood and drought events, a trend analysis is carried out to identify changes in the frequency and magnitude of extreme events through the Mann-Kendall (M-K) test and a linear regression model between time and the flood magnitude.  <br>The analysis has permitted to identify areas of the world prone to floods and drought, so that appropriate actions for disaster risk mitigation and continuous improvement in disaster preparedness, response, and recovery practices can be adopted. </p>


2008 ◽  
Vol 12 (3) ◽  
pp. 841-861 ◽  
Author(s):  
M. Hunger ◽  
P. Döll

Abstract. This paper investigates the value of observed river discharge data for global-scale hydrological modeling of a number of flow characteristics that are e.g. required for assessing water resources, flood risk and habitat alteration of aquatic ecosystems. An improved version of the WaterGAP Global Hydrology Model (WGHM) was tuned against measured discharge using either the 724-station dataset (V1) against which former model versions were tuned or an extended dataset (V2) of 1235 stations. WGHM is tuned by adjusting one model parameter (γ) that affects runoff generation from land areas in order to fit simulated and observed long-term average discharge at tuning stations. In basins where γ does not suffice to tune the model, two correction factors are applied successively: the areal correction factor corrects local runoff in a basin and the station correction factor adjusts discharge directly the gauge. Using station correction is unfavorable, as it makes discharge discontinuous at the gauge and inconsistent with runoff in the upstream basin. The study results are as follows. (1) Comparing V2 to V1, the global land area covered by tuning basins increases by 5% and the area where the model can be tuned by only adjusting γ increases by 8%. However, the area where a station correction factor (and not only an areal correction factor) has to be applied more than doubles. (2) The value of additional discharge information for representing the spatial distribution of long-term average discharge (and thus renewable water resources) with WGHM is high, particularly for river basins outside of the V1 tuning area and in regions where the refined dataset provides a significant subdivision of formerly extended tuning basins (average V2 basin size less than half the V1 basin size). If the additional discharge information were not used for tuning, simulated long-term average discharge would differ from the observed one by a factor of, on average, 1.8 in the formerly untuned basins and 1.3 in the subdivided basins. The benefits tend to be higher in semi-arid and snow-dominated regions where the model is less reliable than in humid areas and refined tuning compensates for uncertainties with regard to climate input data and for specific processes of the water cycle that cannot be represented yet by WGHM. Regarding other flow characteristics like low flow, inter-annual variability and seasonality, the deviation between simulated and observed values also decreases significantly, which, however, is mainly due to the better representation of average discharge but not of variability. (3) The choice of the optimal sub-basin size for tuning depends on the modeling purpose. While basins over 60 000 km2 are performing best, improvements in V2 model performance are strongest in small basins between 9000 and 20 000 km2, which is primarily related to a low level of V1 performance. Increasing the density of tuning stations provides a better spatial representation of discharge, but it also decreases model consistency, as almost half of the basins below 20 000 km2 require station correction.


2009 ◽  
Vol 13 (6) ◽  
pp. 913-921 ◽  
Author(s):  
G. Di Baldassarre ◽  
A. Montanari

Abstract. This study proposes a framework for analysing and quantifying the uncertainty of river flow data. Such uncertainty is often considered to be negligible with respect to other approximations affecting hydrological studies. Actually, given that river discharge data are usually obtained by means of the so-called rating curve method, a number of different sources of error affect the derived observations. These include: errors in measurements of river stage and discharge utilised to parameterise the rating curve, interpolation and extrapolation error of the rating curve, presence of unsteady flow conditions, and seasonal variations of the state of the vegetation (i.e. roughness). This study aims at analysing these sources of uncertainty using an original methodology. The novelty of the proposed framework lies in the estimation of rating curve uncertainty, which is based on hydraulic simulations. These latter are carried out on a reach of the Po River (Italy) by means of a one-dimensional (1-D) hydraulic model code (HEC-RAS). The results of the study show that errors in river flow data are indeed far from negligible.


2016 ◽  
Vol 11 (2) ◽  
pp. 150-155
Author(s):  
R. Troian ◽  
D. Dragna ◽  
C. Bailly ◽  
M.-A. Galland

Modeling of acoustic propagation in a duct with absorbing treatment is considered. The surface impedance of the treatment is sought in the form of a rational fraction. The numerical model is based on a resolution of the linearized Euler equations by finite difference time domain for the calculation of the acoustic propagation under a grazing flow. Sensitivity analysis of the considered numerical model is performed. The uncertainty of the physical parameters is taken into account to determine the most influential input parameters. The robustness of the solution vis-a-vis changes of the flow characteristics and the propagation medium is studied.


2021 ◽  
Vol 108 ◽  
pp. 106377
Author(s):  
Mohammed Faheem ◽  
Aqib Khan ◽  
Rakesh Kumar ◽  
Sher Afghan Khan ◽  
Waqar Asrar ◽  
...  

2007 ◽  
Vol 26 (3) ◽  
pp. 245-247
Author(s):  
Petros Karkalousos

The Schemes of External Quality Control in Laboratory Medicine in the Balkans There are many differences between the national External Quality Control Schemes all around Europe, but the most important ones are certainly those between the countries of the Balkan region. These differences are due to these countries' different political and financial development, as well as to their tradition and the development of clinical chemistry science in each one. Therefore, there are Balkan countries with very developed EQAS and others where there is no such a scheme. Undoubtedly, the scientific community in these countries wants to develop EQAS despite of the financial and other difficulties.


Sign in / Sign up

Export Citation Format

Share Document