scholarly journals A historical reconstruction of cropland in China from 1900 to 2016

2021 ◽  
Author(s):  
Zhen Yu ◽  
Xiaobin Jin ◽  
Lijuan Miao ◽  
Xuhong Yang

Abstract. A spatially-explicit cropland distribution time-series dataset is the basis for the accurate assessment of biogeochemical processes in terrestrial ecosystems and their feedback to the climate system; however, this type of dataset is lacking in China. Existing cropland maps have a coarse resolution, are intermittently covered, or the data are inconsistent. We reconstructed a continuously covered cropland distribution dataset in China spanning from 1900 to 2016 by assimilating multiple data sources. In total, national cropland acreage expanded from 77.72 Mha in 1900 to the peak of 151.00 Mha in 1979, but it consistently decreased thereafter to 134.92 Mha in 2016. The cropland was primarily distributed in three historically cultivated plains in China: the Sichuan Plain, the Northern China Plain, and the Northeast China Plain. Cropland abandonment was approximately 29.90 Mha; it was mainly concentrated in the Northern China Plain and the Sichuan Plain and occurred during the 1990–2010 period. Cropland expansion was over 74.30 Mha; it was primarily found in the southeast, northern central, and northeast regions of China and occurred before 1950. In comparison, the national total and spatial-distribution of cropland in the Food and Agriculture Organization (FAO) of the United Nations and the History Database of the Global Environment (HYDE) were distorted during the period of 1960–1980 due to the biased signal from the Chinese Agricultural Yearbook. We advocate that newly reconstructed cropland data, in which the bias has been corrected, should be used as the updated data for regional and global assessments, such as greenhouse gas emission accountings and food production simulations. The cropland dataset is available via an open-data repository (https://doi.org/10.6084/m9.figshare.13356680) (Yu et al., 2020).

2021 ◽  
Vol 13 (7) ◽  
pp. 3203-3218
Author(s):  
Zhen Yu ◽  
Xiaobin Jin ◽  
Lijuan Miao ◽  
Xuhong Yang

Abstract. A spatially explicit cropland distribution time-series dataset is the basis for the accurate assessment of biogeochemical processes in terrestrial ecosystems and their feedback to the climate system; however, this type of dataset is lacking in China. Existing cropland maps have a coarse resolution, are intermittently covered, or the data are inconsistent. We reconstructed a continuously covered cropland distribution dataset in China spanning from 1900 to 2016 by assimilating multiple data sources. In total, national cropland acreage expanded from 77.72 Mha in 1900 to a peak of 151.00 Mha in 1979, but it consistently decreased thereafter to 134.92 Mha in 2016. The cropland was primarily distributed in three historically cultivated plains in China: the Sichuan Plain, the Northern China Plain, and the Northeast China Plain. Cropland abandonment was approximately 43.12 Mha: it was mainly concentrated in the Northern China Plain and the Sichuan Plain and occurred during the 1990–2010 period. Cropland expansion was over 74.37 Mha: it was primarily found in the southeast, northern central, and northeast regions of China and occurred before 1950. In comparison, the national total and spatial distribution of cropland in the Food and Agriculture Organization (FAO) of the United Nations and the History Database of the Global Environment (HYDE) were distorted during the period from 1960 to 1980 due to the biased signal from the Chinese Agricultural Yearbook. We advocate that newly reconstructed cropland data, in which the bias has been corrected, should be used as the updated data for regional and global assessments, such as greenhouse gas emission accounting studies and food production simulations. The cropland dataset is available via an open-data repository (https://doi.org/10.6084/m9.figshare.13356680; Yu et al., 2020).


Author(s):  
Anupam Pandey ◽  
Priyanka Harishchandra Tripathi ◽  
Ashutosh Paliwal ◽  
Ankita Harishchandra Tripathi ◽  
Satish Chandra Pandey ◽  
...  

Food wastage is a huge crisis arising in today's world. An extensive amount of waste generation has become a serious concern of our society in the past years that affects developing and developed countries equally, and according to the Food and Agriculture Organization (FAO), as much as one-third of the food intentionally grown for human consumption is never consumed and is therefore wasted, with significant environmental, social, and economic ramifications. By wasting food, we also waste the time and energy that we have used to produce the food and as well our natural resources and the limited available agricultural land will be used up which could be handled in a much better and sustainable way. Additionally, waste has a strong financial impact and affects the environment including the overall greenhouse gas emission. In an increasingly resource-constrained world, it is imperative to reduce the high environmental, social, and economic impacts associated with this type of waste.


Author(s):  
Anupam Pandey ◽  
Priyanka Harishchandra Tripathi ◽  
Ashutosh Paliwal ◽  
Ankita Harishchandra Tripathi ◽  
Satish Chandra Pandey ◽  
...  

Food wastage is a huge crisis arising in today's world. An extensive amount of waste generation has become a serious concern of our society in the past years that affects developing and developed countries equally, and according to the Food and Agriculture Organization (FAO), as much as one-third of the food intentionally grown for human consumption is never consumed and is therefore wasted, with significant environmental, social, and economic ramifications. By wasting food, we also waste the time and energy that we have used to produce the food and as well our natural resources and the limited available agricultural land will be used up which could be handled in a much better and sustainable way. Additionally, waste has a strong financial impact and affects the environment including the overall greenhouse gas emission. In an increasingly resource-constrained world, it is imperative to reduce the high environmental, social, and economic impacts associated with this type of waste.


2020 ◽  
Author(s):  
Carlos A Almenara

[THE MANUSCRIPT IS A DRAFT] According to the Food and Agriculture Organization of the United Nations (FAO, 2020), food waste and losses comprises nearly 1.3 billion tonnes every year, which equates to around US$ 990 billion worldwide. Ironically, over 820 million people do not have enough food to eat (FAO, 2020). This gap production-consumption puts in evidence the need to reformulate certain practices such as the controversial monocropping (i.e., growing a single crop on the same land on a yearly basis), as well as to improve others such as revenue management through intelligent systems. In this first part of a series of articles, the focus is on the Peruvian anchoveta fish (Engraulis ringens).


Author(s):  
Gregory A. Barton

This chapter traces the expansion of industrial agricultural methods after the Second World War. Western governments and the Food and Agriculture Organization pushed for increased use of chemical fertilizers to aid development and resist Soviet encroachment. Meanwhile small groups of organic farmers and gardeners adopted Howard’s methods in the Anglo-sphere and elsewhere in the world. European movements paralleled these efforts and absorbed the basic principles of the Indore Method. British parliament debated the merits of organic farming, but Howard failed to persuade the government to adopt his policies. Southern Rhodesia, however, did implement his ideas in law. Desiccation theory aided his attempts in South Africa and elsewhere, and Louise Howard, after Albert’s death, kept alive a wide network of activists with her publications.


2021 ◽  
Vol 11 (13) ◽  
pp. 5911
Author(s):  
Vanesa Martos ◽  
Ali Ahmad ◽  
Pedro Cartujo ◽  
Javier Ordoñez

Timely and reliable information about crop management, production, and yield is considered of great utility by stakeholders (e.g., national and international authorities, farmers, commercial units, etc.) to ensure food safety and security. By 2050, according to Food and Agriculture Organization (FAO) estimates, around 70% more production of agricultural products will be needed to fulfil the demands of the world population. Likewise, to meet the Sustainable Development Goals (SDGs), especially the second goal of “zero hunger”, potential technologies like remote sensing (RS) need to be efficiently integrated into agriculture. The application of RS is indispensable today for a highly productive and sustainable agriculture. Therefore, the present study draws a general overview of RS technology with a special focus on the principal platforms of this technology, i.e., satellites and remotely piloted aircrafts (RPAs), and the sensors used, in relation to the 5th industrial revolution. Nevertheless, since 1957, RS technology has found applications, through the use of satellite imagery, in agriculture, which was later enriched by the incorporation of remotely piloted aircrafts (RPAs), which is further pushing the boundaries of proficiency through the upgrading of sensors capable of higher spectral, spatial, and temporal resolutions. More prominently, wireless sensor technologies (WST) have streamlined real time information acquisition and programming for respective measures. Improved algorithms and sensors can, not only add significant value to crop data acquisition, but can also devise simulations on yield, harvesting and irrigation periods, metrological data, etc., by making use of cloud computing. The RS technology generates huge sets of data that necessitate the incorporation of artificial intelligence (AI) and big data to extract useful products, thereby augmenting the adeptness and efficiency of agriculture to ensure its sustainability. These technologies have made the orientation of current research towards the estimation of plant physiological traits rather than the structural parameters possible. Futuristic approaches for benefiting from these cutting-edge technologies are discussed in this study. This study can be helpful for researchers, academics, and young students aspiring to play a role in the achievement of sustainable agriculture.


2021 ◽  
Author(s):  
Samir Das ◽  
Rida Abou-Haidar ◽  
Henri Rabalais ◽  
Sonia Denise Lai Wing Sun ◽  
Zaliqa Rosli ◽  
...  

AbstractIn January 2016, the Montreal Neurological Institute-Hospital (The Neuro) declared itself an Open Science organization. This vision extends beyond efforts by individual scientists seeking to release individual datasets, software tools, or building platforms that provide for the free dissemination of such information. It involves multiple stakeholders and an infrastructure that considers governance, ethics, computational resourcing, physical design, workflows, training, education, and intra-institutional reporting structures. The C-BIG repository was built in response as The Neuro’s institutional biospecimen and clinical data repository, and collects biospecimens as well as clinical, imaging, and genetic data from patients with neurological disease and healthy controls. It is aimed at helping scientific investigators, in both academia and industry, advance our understanding of neurological diseases and accelerate the development of treatments. As many neurological diseases are quite rare, they present several challenges to researchers due to their small patient populations. Overcoming these challenges required the aggregation of datasets from various projects and locations. The C-BIG repository achieves this goal and stands as a scalable working model for institutions to collect, track, curate, archive, and disseminate multimodal data from patients. In November 2020, a Registered Access layer was made available to the wider research community at https://cbigr-open.loris.ca, and in May 2021 fully open data will be released to complement the Registered Access data. This article outlines many of the aspects of The Neuro’s transition to Open Science by describing the data to be released, C-BIG’s full capabilities, and the design aspects that were implemented for effective data sharing.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
M Anderson ◽  
K Schulze ◽  
A Cassini ◽  
D Plauchoras ◽  
E Mossialos

Abstract Antimicrobial resistance is one of the major challenges of our time. Countries use national action plans as a mechanism to build engagement among stakeholders and coordinate a range of actions across human, animal, and environmental health. However, implementation of recommended policies such as stewardship of antimicrobials, infection prevention and control, and stimulating research and development of novel antimicrobials and alternatives remains inconsistent. Improving the quality of governance within antimicrobial resistance national action plans is an essential step to improving implementation. To date, no systematic approach to governance of national action plans on AMR exists. To address this issue, we aimed to develop the first governance framework to offer guidance for both the development and assessment of national action plans on AMR. We reviewed health system governance framework reviews to inform the basic structure of our framework, international guidance documents from WHO, the Food and Agriculture Organization, the World Organisation for Animal Health, and the European Commission, and sought the input of 25 experts from international organisations, government ministries, policy institutes, and academic institutions to develop and refine our framework. The framework consists of 18 domains with 52 indicators that are contained within three governance areas: policy design, implementation tools, and monitoring and evaluation. Countries must engage with a cyclical process of continuous design, implementation, monitoring and evaluation to achieve these aims.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1567
Author(s):  
Joanna Moro ◽  
Nadezda Khodorova ◽  
Daniel Tomé ◽  
Claire Gaudichon ◽  
Catherine Tardivel ◽  
...  

Objective: Dietary intakes must cover protein and essential amino acid (EAA) requirements. For this purpose, different methods have been developed such as the nitrogen balance method, factorial method, or AA tracer studies. However, these methods are either invasive or imprecise, and the Food and Agriculture Organization of the United Nations (FAO, 2013) recommends new methods and, in particular, metabolomics. The aim of this study is to determine total protein/EAA requirement in the plasma and urine of growing rats. Methods: 36 weanling rats were fed with diets containing 3, 5, 8, 12, 15, and 20% protein for 3 weeks. During experimentation, urine was collected using metabolic cages, and blood from the portal vein and vena was taken at the end of the experiment. Metabolomics analyses were performed using LC-MS, and the data were analyzed with a multivariate analysis model, partial least Squares (PLS) regression, and independent component-discriminant analysis (ICDA). Each discriminant metabolite identified by PLS or ICDA was tested by one-way ANOVA to evaluate the effect of diet. Results: PLS and ICDA allowed us to identify discriminating metabolites between different diet groups. Protein deficiency led to an increase in the AA catabolism enzyme systems inducing the production of breakdown metabolites in the plasma and urine. Conclusion: These results indicate that metabolites are specific for the state of EAA deficiency and sufficiency. Some types of biomarkers such as AA degradation metabolites appear to be specific candidates for protein/EAA requirement.


Sign in / Sign up

Export Citation Format

Share Document