scholarly journals Sea ice draft in the Weddell Sea, measured by upward looking sonars

2013 ◽  
Vol 5 (1) ◽  
pp. 209-226 ◽  
Author(s):  
A. Behrendt ◽  
W. Dierking ◽  
E. Fahrbach ◽  
H. Witte

Abstract. The presented database contains time-referenced sea ice draft values from upward looking sonar (ULS) measurements in the Weddell Sea, Antarctica. The sea ice draft data can be used to infer the thickness of the ice. They were collected during the period 1990–2008. In total, the database includes measurements from 13 locations in the Weddell Sea and was generated from more than 3.7 million measurements of sea ice draft. The files contain uncorrected raw drafts, corrected drafts and the basic parameters measured by the ULS. The measurement principle, the data processing procedure and the quality control are described in detail. To account for the unknown speed of sound in the water column above the ULS, two correction methods were applied to the draft data. The first method is based on defining a reference level from the identification of open water leads. The second method uses a model of sound speed in the oceanic mixed layer and is applied to ice draft in austral winter. Both methods are discussed and their accuracy is estimated. Finally, selected results of the processing are presented. The data can be downloaded from doi:10.1594/PANGAEA.785565.

2012 ◽  
Vol 5 (2) ◽  
pp. 805-851 ◽  
Author(s):  
A. Behrendt ◽  
W. Dierking ◽  
E. Fahrbach ◽  
H. Witte

Abstract. The presented database contains time-referenced sea ice draft values from upward looking sonar (ULS) measurements in the Weddell Sea, Antarctica. The sea ice draft data can be used to infer the thickness of the ice. They were collected during the period 1990–2008. In total, the database includes measurements from 13 locations in the Weddell Sea and was generated from more than 3.7 million measurements of sea ice draft. The files contain uncorrected raw drafts, corrected drafts from two different methods and the basic parameters measured by the ULS. The measurement principle, the data processing procedure and the quality control are described in detail. To account for the unknown speed of sound in the water column above the ULS, two correction methods were applied to the data. The first method is based on defining a reference level from the identification of open water leads. The second method uses a model of sound speed in the oceanic mixed layer and is applied to ice draft in austral winter. Both methods are discussed and their accuracy is estimated. Finally, selected results of the processing are presented. The data can be downloaded under http://doi.pangaea.de/10.1594/PANGAEA.785565.


2012 ◽  
Vol 6 (2) ◽  
pp. 479-491 ◽  
Author(s):  
A. I. Weiss ◽  
J. C. King ◽  
T. A. Lachlan-Cope ◽  
R. S. Ladkin

Abstract. This study investigates the surface albedo of the sea ice areas adjacent to the Antarctic Peninsula during the austral summer. Aircraft measurements of the surface albedo, which were conducted in the sea ice areas of the Weddell and Bellingshausen Seas show significant differences between these two regions. The averaged surface albedo varied between 0.13 and 0.81. The ice cover of the Bellingshausen Sea consisted mainly of first year ice and the sea surface showed an averaged sea ice albedo of αi = 0.64 ± 0.2 (± standard deviation). The mean sea ice albedo of the pack ice area in the western Weddell Sea was αi = 0.75 ± 0.05. In the southern Weddell Sea, where new, young sea ice prevailed, a mean albedo value of αi = 0.38 ± 0.08 was observed. Relatively warm open water and thin, newly formed ice had the lowest albedo values, whereas relatively cold and snow covered pack ice had the highest albedo values. All sea ice areas consisted of a mixture of a large range of different sea ice types. An investigation of commonly used parameterizations of albedo as a function of surface temperature in the Weddell and Bellingshausen Sea ice areas showed that the albedo parameterizations do not work well for areas with new, young ice.


2004 ◽  
Vol 39 ◽  
pp. 276-282 ◽  
Author(s):  
Andrew M. Rankin ◽  
Eric W. Wolff ◽  
Robert Mulvaney

AbstractIt has recently been shown that much sea-salt aerosol around the coast of Antarctica is generated not from open water, but from the surface of newly formed sea ice. Previous interpretations of ice-core records have disregarded the sea-ice surface as a source of sea salt. The majority of sea-salt aerosol at Halley research station originates from frost flowers rather than open water, and the seasonal cycle of sea salt in aerosol at Halley appears to be controlled by ice production in the Weddell Sea, as well as variations in wind speed. Frost flowers are also an important source of aerosol at Siple Dome, suggesting that variations in sea-salt concentrations in the core, and other cores drilled in similar locations, may be reflecting changes in sea-ice production rather than changes in transportation patterns. For Greenland cores, and those from low-accumulation inland sites in Antarctica, it is not simple to calculate the proportion of sea salt originating from frost flowers rather than open water. However, modelling studies suggest that a sea-ice surface source contributed much of the flux of sea salt to these sites in glacial periods, suggesting that interpretations of ice-core records from these locations should also be revisited.


1990 ◽  
Vol 14 ◽  
pp. 266-269 ◽  
Author(s):  
Ian Simmonds ◽  
W.F. Budd

We present a simple parameterization of the effect of open leads in a general circulation model of the atmosphere. We consider only the case where the sea ice distribution is prescribed (i.e., not interactive) and the fraction of open water in the ice is also prescribed and set at the same value at all points in the Southern Hemisphere and a different value in the Northern Hemisphere. We approximate the distribution of sea ice over a model “grid box” as a part of the box being covered by solid ice of uniform thickness and the complement of the box consisting of open water at a fixed -1.8 C. Because of the nonlinearity in the flux computations, separate calculations are performed over the solid sea ice and over the open leads. The net fluxes conveyed to the atmosphere over the grid box are determined by performing the appropriate area-weighted average over the two surface types. We report on an experiment designed to assess the sensitivity of the modelled climate to the imposition of a 50% concentration in the winter Antarctic sea ice. Significant warming of up to 6°C takes place in the vicinity of and above the Antarctic sea ice and is associated with significant changes in the zonal wind structure. Pressure reductions are simulated over the sea ice, being particularly marked in the Weddell Sea region, and an anomalous east-west aligned ridge is simulated at about 60°S. Very large changes in the sensible heat flux (in excess of 200 Wm−2) are simulated near the coast of Antarctica.


2020 ◽  
Author(s):  
Adriano Lemos ◽  
Céline Heuzé

<p>The sea ice thickness in the Weddell Sea during the austral winter normally exceeds 1 m, but in the case of a polynya, this thickness decreases to 10 cm or less. There are two theories as to why the Weddell Polynya opens: 1) comparatively warm oceanic water upwelling from its nominal depth of several hundred metres to the surface where it melts the sea ice from underneath; or 2) opening of a lead by a passing storm, lead which will then be maintained open either by the atmosphere or ocean and grow. The objective of this study is to estimate how long in advance the recent Weddell Polynya opening could have been detected by synthetic aperture radar (SAR) images due to the decrease of the sea ice thickness and/or early appearance of leads. We use high temporal and spatial resolution SAR images from the Sentinel-1 constellation (C-band) and ALOS2 (L-band) during the austral winters 2014-2018. We use an adapted version of the algorithm developed by Aldenhoff et al. (2018) to monitor changes in sea ice thickness over the polynya region. The algorithm detects the transition of the sea ice thickness through changes in small scale surface roughness and thus reduced backscatter, and allowing us to distinguish three different categories: ice, thin ice, and open water. The transition from ice to thin ice and then to open water indicates that the polynya is melted from under, whereas a direct transition from ice to open water will reveal leads. The high resolution and good coverage of the SAR imagery, and a combined effort of different satellites sensors (e.g. infrared and microwave sensors), opens the possibility of an early detection of Weddell Polynya opening.</p>


2020 ◽  
Author(s):  
John Shears ◽  
Julian Dowdeswell ◽  
Freddie Ligthelm ◽  
Paul Wachter

<p>The Weddell Sea Expedition 2019 (WSE) was conceived with dual aims: (i) to undertake a comprehensive international inter-disciplinary programme of science centred in the waters around Larsen C Ice Shelf, western Weddell Sea; and (ii) to search for, survey and image the wreck of Sir Ernest Shackleton’s Endurance, which sank in the Weddell Sea in 1915. </p><p>The 6-week long expedition, funded by the Flotilla Foundation, required the use of a substantial ice-strengthened vessel given the very difficult sea-ice conditions encountered in the Weddell Sea, and especially in its central and western parts. The South African ship SA Agulhas II was chartered for its Polar Class 5 icebreaking capability and design as a scientific research vessel. The expedition was equipped with state-of-the-art Autonomous Underwater Vehicles (AUVs) and a Remotely Operated Vehicle (ROV) which were capable of deployment to waters more than 3,000 m deep, thus making the Larsen C continental shelf and slope, and the Endurance wreck site, accessible. During the expedition, a suite of passive and active remote-sensing data, including TerraSAR-X radar images delivered in near real-time, was provided to the ice-pilot onboard the SA Agulhas II. These data were instrumental for safe vessel navigation in sea ice and the detection and tracking of icebergs and ice floes of scientific interest.</p><p>The scientific programme undertaken by the WSE was very successful and produced many new geological, geophysical, marine biological and oceanographic observations from a part of the Weddell Sea that has been little studied previously, particularly the area east of Larsen C Ice Shelf. The expedition also reached the sinking location of Shackleton’s Endurance, where the presence of open-water sea ice leads allowed the deployment of an AUV to the ocean floor to try and locate and survey the wreck. Unfortunately, SA Agulhas II later lost communication with the AUV, and deteriorating weather and sea ice conditions meant that the search had to be called off.</p>


2001 ◽  
Vol 33 ◽  
pp. 425-429 ◽  
Author(s):  
S. F. Ackley ◽  
C. A. Geiger ◽  
J. C. King ◽  
E. C. Hunke ◽  
J. Comiso

AbstractThe Ronne polynya formed in the Weddell Sea, Antarctica, during the period November 1997−February 1998 to an extent not seen previously in the 25 years of all-weather satellite observations. The vessel HMS Endurance traversed the polynya region and took sea-ice, physical oceanographic and meteorological measurements during January and early February 1998. These observations, together with satellite imagery and weather records, were analyzed to determine the causes of the anomalous condition observed and to provide comparisons for numerical modeling experiments. The polynya area, analyzed from satellite imagery, showed a linear, nearly constant, increase with time from mid-November 1997 through February 1998. It had a maximum open-water area of 3 × 105 km2 and extended 500 km north of the Ronne Ice Shelf (at 76° S) to 70° S. The ice and snow structure of floes at the northern edge of the polynya showed the ice there had formed in the previous mid- to late winter (October 1997 or earlier) and had been advected there either from the eastern Weddell Sea or from the front of the Ronne Ice Shelf. Analyses of the wind fields showed anomalous spring-summer wind fields in the polynya year, with a strong southerly to southwesterly component compared to the mean easterly winds typical of summer conditions. These southerly wind conditions, in both magnitude and direction, therefore account for the drift of ice northward. The predominant summer easterly winds usually fill the southern Weddell Sea with ice from the east, and the high-albedo surfaces reflect the solar radiation, preventing warming of the surface ocean waters and consequent sea-ice melt. Instead, high incident solar radiation from November 1997 to February 1998 was absorbed by the open water, rather than being reflected, thereby both melting ice and preventing ice formation, and thereby sustaining the polynya. We conclude that open-water-albedo feedback is necessary to allow the observed polynya formation, since similar drift conditions prevail in winter (arising from southerly winds also) and usually result in extensive new ice formation in front of the Ronne Ice Shelf. The strong southerly winds therefore have quite opposing seasonal effects, leading to high ice production in winter as usually found, and extensive open water if they occur in spring and summer, as seen in this atypical event in 1997/98. In this case, the atypical southerly winds may be associated with an El Niño-Southern Oscillation (ENSO)-induced atmospheric circulation pattern.


1982 ◽  
Vol 3 ◽  
pp. 350-350
Author(s):  
H.J. Zwally ◽  
J.C. Comiso ◽  
C.L. Parkinson ◽  
F.D. Carsey ◽  
W.J. Campbell ◽  
...  

A quantitative comparison of seasonal and interannual Antarctic sea-ice coverage over the four years 1973-76 has been accomplished through the use of passive microwave imagery from the Nimbus-5 satellite. For the entire Southern Ocean both the total ice extent (area with ice concentration greater than 15%) and the actual ice area (the spatially-integrated ice concentration) have decreased over this period of 4 a, but not uniformly in all regions. From 1973 to 1976 the annual-mean value of total ice extent decreased from 13.8 × 106 km2 to 12.1 × 106 km2, yielding an average decrease of 4.0% a−1. The inter-annual difference is greatest during the spring, as the ice decays, with the decrease in the December-mean averaging 8.4% a−1, the largest of any month. The decrease in the November-mean averaged 4.5% a−1. The overall decrease was principally due to the consistent yearly decrease of ice In the Weddell Sea sector (60°W to 20°E). Other sectors show less consistency. For instance, the ice in the Ross Sea sector (130°W to 160°E) increased from 1973 to 1974 and then decreased from 1974 to 1976, and no consistent trend is apparent in the ice extent between 20°E and 160°E. The total ice extent in the Bellingshausen- Amundsen seas sector (60°W to 130°W) actually increased slightly from 1973 to 1976. The area of the open water within the ice pack behaved differently from the total ice area, Increasing each year from February to November but having no clear interannual trend. A detailed analysis of the passive microwave imagery for the Antarctic region is planned for publication in an atlas.


2020 ◽  
Author(s):  
Martin Mohrmann ◽  
Céline Heuzé ◽  
Sebastiaan Swart

<p>The presence of polynyas has a large effect on air-sea fluxes and deep water production, therefore impacting climate-relevant properties such as heat and carbon exchange between the atmosphere and ocean interior. One of the key areas of deep water formation is in the Weddell Sea, where much attention has recently been placed in the reoccurance of the open ocean Maud Rise polynya. In this study, two methods are presented to track the number, area and spatial distribution of polynyas with a focus on the Weddell Sea. The analysis is applied to a set of 10 Coupled Model Intercomparison Project phase 6 (CMIP6) models and to satellite sea ice concentration data. The first approach is a sea ice threshold method applied to the CMIP6 sea ice data at the original model grid. Open water areas surrounded by sea ice are classified as polynyas. Without requiring any remapping or interpolation, this method preserves the area information of all grid cells and is well suited to compute the combined area of the polynyas in the Weddell Sea. The second approach makes use of an image analysis technique to outline areas with low sea ice concentration. This method is preferable for counting the absolute number of polynyas and obtaining statistical information about their position. Satellite sea ice concentration is used as a reference to compare the performance of the models representing polynya area and to indicate model biases in the location of polynyas. All analyzed CMIP6 models show coastal polynyas, while only about half of the models regularly form open water polynyas. The resolution (about one degree for most models) sets a limit for the number of the polynyas in the numerical models.</p>


Sign in / Sign up

Export Citation Format

Share Document