scholarly journals The Ronne polynya of 1997/98: observations of air-ice-ocean interaction

2001 ◽  
Vol 33 ◽  
pp. 425-429 ◽  
Author(s):  
S. F. Ackley ◽  
C. A. Geiger ◽  
J. C. King ◽  
E. C. Hunke ◽  
J. Comiso

AbstractThe Ronne polynya formed in the Weddell Sea, Antarctica, during the period November 1997−February 1998 to an extent not seen previously in the 25 years of all-weather satellite observations. The vessel HMS Endurance traversed the polynya region and took sea-ice, physical oceanographic and meteorological measurements during January and early February 1998. These observations, together with satellite imagery and weather records, were analyzed to determine the causes of the anomalous condition observed and to provide comparisons for numerical modeling experiments. The polynya area, analyzed from satellite imagery, showed a linear, nearly constant, increase with time from mid-November 1997 through February 1998. It had a maximum open-water area of 3 × 105 km2 and extended 500 km north of the Ronne Ice Shelf (at 76° S) to 70° S. The ice and snow structure of floes at the northern edge of the polynya showed the ice there had formed in the previous mid- to late winter (October 1997 or earlier) and had been advected there either from the eastern Weddell Sea or from the front of the Ronne Ice Shelf. Analyses of the wind fields showed anomalous spring-summer wind fields in the polynya year, with a strong southerly to southwesterly component compared to the mean easterly winds typical of summer conditions. These southerly wind conditions, in both magnitude and direction, therefore account for the drift of ice northward. The predominant summer easterly winds usually fill the southern Weddell Sea with ice from the east, and the high-albedo surfaces reflect the solar radiation, preventing warming of the surface ocean waters and consequent sea-ice melt. Instead, high incident solar radiation from November 1997 to February 1998 was absorbed by the open water, rather than being reflected, thereby both melting ice and preventing ice formation, and thereby sustaining the polynya. We conclude that open-water-albedo feedback is necessary to allow the observed polynya formation, since similar drift conditions prevail in winter (arising from southerly winds also) and usually result in extensive new ice formation in front of the Ronne Ice Shelf. The strong southerly winds therefore have quite opposing seasonal effects, leading to high ice production in winter as usually found, and extensive open water if they occur in spring and summer, as seen in this atypical event in 1997/98. In this case, the atypical southerly winds may be associated with an El Niño-Southern Oscillation (ENSO)-induced atmospheric circulation pattern.

2020 ◽  
Author(s):  
John Shears ◽  
Julian Dowdeswell ◽  
Freddie Ligthelm ◽  
Paul Wachter

<p>The Weddell Sea Expedition 2019 (WSE) was conceived with dual aims: (i) to undertake a comprehensive international inter-disciplinary programme of science centred in the waters around Larsen C Ice Shelf, western Weddell Sea; and (ii) to search for, survey and image the wreck of Sir Ernest Shackleton’s Endurance, which sank in the Weddell Sea in 1915. </p><p>The 6-week long expedition, funded by the Flotilla Foundation, required the use of a substantial ice-strengthened vessel given the very difficult sea-ice conditions encountered in the Weddell Sea, and especially in its central and western parts. The South African ship SA Agulhas II was chartered for its Polar Class 5 icebreaking capability and design as a scientific research vessel. The expedition was equipped with state-of-the-art Autonomous Underwater Vehicles (AUVs) and a Remotely Operated Vehicle (ROV) which were capable of deployment to waters more than 3,000 m deep, thus making the Larsen C continental shelf and slope, and the Endurance wreck site, accessible. During the expedition, a suite of passive and active remote-sensing data, including TerraSAR-X radar images delivered in near real-time, was provided to the ice-pilot onboard the SA Agulhas II. These data were instrumental for safe vessel navigation in sea ice and the detection and tracking of icebergs and ice floes of scientific interest.</p><p>The scientific programme undertaken by the WSE was very successful and produced many new geological, geophysical, marine biological and oceanographic observations from a part of the Weddell Sea that has been little studied previously, particularly the area east of Larsen C Ice Shelf. The expedition also reached the sinking location of Shackleton’s Endurance, where the presence of open-water sea ice leads allowed the deployment of an AUV to the ocean floor to try and locate and survey the wreck. Unfortunately, SA Agulhas II later lost communication with the AUV, and deteriorating weather and sea ice conditions meant that the search had to be called off.</p>


2021 ◽  
pp. 1
Author(s):  
Rachel Kim ◽  
Bruno Tremblay ◽  
Charles Brunette ◽  
Robert Newton

AbstractThinning sea ice cover in the Arctic is associated with larger interannual variability in the minimum Sea Ice Extent (SIE). The current generation of forced or fully coupled models, however, have difficulty predicting SIE anomalies from the long-term trend, highlighting the need to better identify the mechanisms involved in the seasonal evolution of sea ice cover. One such mechanism is Coastal Divergence (CD), a proxy for ice thickness anomalies based on late winter ice motion, quantified using Lagrangian ice tracking. CD gains predictive skill through the positive feedback of surface albedo anomalies, mirrored in Reflected Solar Radiation (RSR), during melt season. Exploring the dynamic and thermodynamic contributions to minimum SIE predictability, RSR, initial SIE (iSIE) and CD are compared as predictors using a regional seasonal sea ice forecast model for July 1, June 1 and May 1 forecast dates for all Arctic peripheral seas. The predictive skill of June RSR anomalies mainly originates from open water fraction at the surface, i.e. June iSIE and June RSR have equal predictive skill for most seas. The finding is supported by the surprising positive correlation found between June Melt Pond Fraction (MPF) and June RSR in all peripheral seas: MPF anomalies indicate presence of ice or open water that is key to creating minimum SIE anomalies. This contradicts models that show correlation between melt onset, MPF and the minimum SIE. A hindcast model shows that for a May 1 forecast, CD anomalies have better predictive skill than RSR anomalies for most peripheral seas.


1998 ◽  
Vol 27 ◽  
pp. 99-104 ◽  
Author(s):  
K. Grosfeld ◽  
R. Gerdes

We investigate the sensitivity of the ocean circulation in the Filchner Trough to changes in the large-scale oceanic environment and its impact on the mass balance of the Filchner Ice Shelf, Antarctica. Three experiments with a three-dimensional ocean model describe (i) the current situation, (ii) a scenario with increased ocean temperatures, and (iii) a scenario with reduced sea-ice formation rates on the adjacent continental shelf. in the final discussion brief results of a combined scenario with increased ocean temperatures and reduced sea-ice formation are presented. The changes from the current situation affect the circulation in the Filchner Trough, and melting and freezing processes beneath the ice shelf. The latter affect the amount and properties of Ice Shelf Water (ISW), a component of Antarctic Bottom Water. Net basal melt rates provide an overall measure for the changes: while the control run yields 0.35 m a−1 net melting averaged over the Filchner Ice Shelf area, the warming scenario results in a more than twofold increase in ice-shelf mass loss. Reduced production of High Salinity ShelfWater due to smaller sea-ice formation rates in the second scenario leads, on the other hand, to a decrease in basal mass loss, because the deep cavity is less well ventilated than in the control run. ISW is cooled and the ice shelf is stabilized under this scenario, which is arguably the more likely development in the southern Weddell Sea.


2015 ◽  
Vol 9 (4) ◽  
pp. 3959-3993
Author(s):  
S. Paul ◽  
S. Willmes ◽  
G. Heinemann

Abstract. Based upon high-resolution thermal-infrared Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite imagery in combination with ERA-Interim atmospheric reanalysis data, we derived long-term polynya parameters such as polynya area, thin-ice thickness distribution and ice-production rates from daily cloud-cover corrected thin-ice thickness composites. Our study is based on a thirteen year investigation period (2002–2014) for the austral winter (1 April to 30 September) in the Antarctic Southern Weddell Sea. The focus lies on coastal polynyas which are important hot spots for new-ice formation, bottom-water formation and heat/moisture release into the atmosphere. MODIS has the capability to resolve even very narrow coastal polynyas. Its major disadvantage is the sensor limitation due to cloud cover. We make use of a newly developed and adapted spatial feature reconstruction scheme to account for cloud-covered areas. We find the sea-ice areas in front of Ronne and Brunt Ice Shelf to be the most active with an annual average polynya area of 3018 ± 1298 and 3516 ± 1420 km2 as well as an accumulated volume ice production of 31 ± 13 and 31 ± 12 km3, respectively. For the remaining four regions, estimates amount to 421 ± 294 km2 and 4 ± 3 km3 (Antarctic Peninsula), 1148 ± 432 km2 and 12 ± 5 km3 (Iceberg A23A), 901 ± 703 km2 and 10 ± 8 km3 (Filchner Ice Shelf) as well as 499 ± 277 km2 and 5 ± 2 km3 (Coats Land). Our findings are discussed in comparison to recent studies based on coupled sea-ice/ocean models and passive-microwave satellite imagery, each investigating different parts of the Southern Weddell Sea.


2001 ◽  
Vol 33 ◽  
pp. 419-424 ◽  
Author(s):  
R. Timmermann ◽  
A. Beckmann ◽  
H. H. Hellmer

AbstractA coupled sea-ice-ocean model of the Weddell Sea, Antarctica, has been developed as part of the Bremerhaven Regional Ice-Ocean Simulations (BRIOS) project. It is based on the s-Coordinate Primitive Equation ocean Model (SPEM) and a dynamic-thermodynamic sea-ice model with viscous-plastic rheology which also provides the thermohaline forcing at the base of the Antarctic ice shelves. Model runs are forced with wind, cloudiness, temperature and precipitation fields of the European Centre for Medium-range Weather Forecasts and U.S. National Centers for Environmental Prediction re-analyses. Model results show good agreement with observations of ice extent, thickness and drift. Water-mass properties and the large-scale circulation are in good agreement with observations. Fresh-water fluxes from sea-ice formation as well as from ice-shelf basal melting and from precipitation are computed and compiled to the fresh-water budget of the Weddell Sea. Supporting estimates based on hydrographic observations, model results indicate that fresh-water loss due to sea-ice formation and export (34mSv) is roughly balanced by ice-shelf basal melting (9 mSv) and net precipitation (19 mSv). Furthermore, sea-ice formation appears to be a necessary condition for bottom-water production in the Weddell Sea.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 174
Author(s):  
Günther Heinemann ◽  
Sascha Willmes ◽  
Lukas Schefczyk ◽  
Alexander Makshtas ◽  
Vasilii Kustov ◽  
...  

The parameterization of ocean/sea-ice/atmosphere interaction processes is a challenge for regional climate models (RCMs) of the Arctic, particularly for wintertime conditions, when small fractions of thin ice or open water cause strong modifications of the boundary layer. Thus, the treatment of sea ice and sub-grid flux parameterizations in RCMs is of crucial importance. However, verification data sets over sea ice for wintertime conditions are rare. In the present paper, data of the ship-based experiment Transarktika 2019 during the end of the Arctic winter for thick one-year ice conditions are presented. The data are used for the verification of the regional climate model COSMO-CLM (CCLM). In addition, Moderate Resolution Imaging Spectroradiometer (MODIS) data are used for the comparison of ice surface temperature (IST) simulations of the CCLM sea ice model. CCLM is used in a forecast mode (nested in ERA5) for the Norwegian and Barents Seas with 5 km resolution and is run with different configurations of the sea ice model and sub-grid flux parameterizations. The use of a new set of parameterizations yields improved results for the comparisons with in-situ data. Comparisons with MODIS IST allow for a verification over large areas and show also a good performance of CCLM. The comparison with twice-daily radiosonde ascents during Transarktika 2019, hourly microwave water vapor measurements of first 5 km in the atmosphere and hourly temperature profiler data show a very good representation of the temperature, humidity and wind structure of the whole troposphere for CCLM.


2003 ◽  
Vol 69 (8) ◽  
pp. 4884-4891 ◽  
Author(s):  
Kevin A. Hughes

ABSTRACT Factors affecting fecal microorganism survival and distribution in the Antarctic marine environment include solar radiation, water salinity, temperature, sea ice conditions, and fecal input by humans and local wildlife populations. This study assessed the influence of these factors on the distribution of presumptive fecal coliforms around Rothera Point, Adelaide Island, Antarctic Peninsula during the austral summer and winter of February 1999 to September 1999. Each factor had a different degree of influence depending on the time of year. In summer (February), although the station population was high, presumptive fecal coliform concentrations were low, probably due to the biologically damaging effects of solar radiation. However, summer algal blooms reduced penetration of solar radiation into the water column. By early winter (April), fecal coliform concentrations were high, due to increased fecal input by migrant wildlife, while solar radiation doses were low. By late winter (September), fecal coliform concentrations were high near the station sewage outfall, as sea ice formation limited solar radiation penetration into the sea and prevented wind-driven water circulation near the outfall. During this study, environmental factors masked the effect of station population numbers on sewage plume size. If sewage production increases throughout the Antarctic, environmental factors may become less significant and effective sewage waste management will become increasingly important. These findings highlight the need for year-round monitoring of fecal coliform distribution in Antarctic waters near research stations to produce realistic evaluations of sewage pollution persistence and dispersal.


2001 ◽  
Vol 33 ◽  
pp. 45-50 ◽  
Author(s):  
V.I. Lytle ◽  
S.F. Ackley

AbstractDuring a field experiment in July 1994, while the R.V. Nathaniel B. Palmer was moored to a drifting ice floe in the Weddell Sea, Antarctica, data were collected on sea-ice and snow characteristics. We report on the evolution of ice which grew in a newly opened lead. As expected with cold atmospheric conditions, congelation ice initially formed in the lead. Subsequent snow accumulation and large ocean heat fluxes resulted in melt at the base of the ice, and enhanced flooding of the snow on the ice surface. This flooded snow subsequently froze, and, 5 days after the lead opened, all the congelation ice had melted and 26 cm of snow ice had formed. We use measured sea-ice and snow salinities, thickness and oxygen isotope values of the newly formed lead ice to calculate the salt flux to the ocean. Although there was a salt flux to the ocean as the ice initially grew, we calculate a small net fresh-wlter input to the upper ocean by the end of the 5 day period. Similar processes of basal melt and surface snow-ice formation also occurred on the surrounding, thicker sea ice. Oceanographic studies in this region of the Weddell Sea have shown that salt rejection by sea-ice formation may enhance the ocean vertical thermohaline circulation and release heat from the deeper ocean to melt the ice cover. This type of deep convection is thought to initiate the Weddell polynya, which was observed only during the 1970s. Our results, which show that an ice cover can form with no salt input to the ocean, provide a mechanism which may help explain the more recent absence of the Weddell polynya.


Sign in / Sign up

Export Citation Format

Share Document