scholarly journals Supplementary material to "Modelling long-term, large-scale sediment storage using a simple sediment budget approach"

Author(s):  
V. Naipal ◽  
C. Reick ◽  
K. Van Oost ◽  
T. Hoffmann ◽  
J. Pongratz
2016 ◽  
Author(s):  
V. Naipal ◽  
C. Reick ◽  
K. Van Oost ◽  
T. Hoffmann ◽  
J. Pongratz

Abstract. Currently, the anthropogenic disturbances to the biogeochemical cycles remain unquantified due to the poor representation of lateral fluxes of carbon and nutrients in Earth System Models (ESMs) that couple the terrestrial and ocean systems. Soil redistribution plays an important role in the transport of carbon and nutrients between terrestrial ecosystems, however, quantification of soil redistribution and its effects on the global biogeochemical cycles is missing. This study aims at developing new tools and methods to represent soil redistribution on a global scale, and contribute to the quantification of anthropogenic disturbances to the biogeochemical cycles. We present a new large-scale coarse resolution sediment budget model that is compatible with ESMs. This model can simulate spatial patterns and long-term trends in soil redistribution in floodplains and on hillslope, resulting from external forces such as climate and land use change. We applied this model on the Rhine catchment using climate and land cover data from the Max Planck Institute Earth System Model (MPI-ESM) for the last millennium (850-2005 AD). Validation is done using observed Holocene sediment storage data and observed scaling relations between sediment storage and catchment area from the Rhine catchment. We found that the model reproduces the spatial distribution of floodplain sediment storage and the scaling relationships for floodplains and hillslopes as found in observations. The exponents of the scaling relationships can be modified by changing the spatial distribution of erosion or by changing the residence time for floodplains. However, the main feature of the scaling behavior, which is that sediment storage in floodplains increases stronger with catchment area than sediment stored on hillslopes, is not changed. Based on this we argue that the scaling behavior is an emergent feature of the model and mainly dependent on the underlying topography. Additionally, we identified that land use change explains most of the temporal variability in sediment storage for the last millennium in the Rhine catchment.


2015 ◽  
Vol 7 (12) ◽  
pp. 15
Author(s):  
Gunnar Bengtsson

<p>Toxic metals are mobilized on a large scale in modern society. Many of those metals end up in sewage sludge. The objective of this review was to elucidate the threat to groundwater due to a few metals lost from tilled sludge amended soils. It is sometimes suggested that these metals are immobilized in the topsoil and do not move downward. In contrast, dozens of long term field studies around the world indicate that penetration depths for metals increase with time since deposition.</p><p>Such studies were examined in depth in the current analysis. An equation was developed for calculation of long term mean metal penetration rates into the topsoil for copper and silver. The equation is valid for about a century but not much longer. The mean depths of a basic set of 11 cases from studies over 4 years to 100 years were predicted with a standard deviation of 11%. A typical penetration rate was 3 mm per year. There was no significant difference in penetration rate between several cations. Extremely large amendments were associated with larger penetration rates.</p><p>When metals have traversed the topsoil, the groundwater will be contaminated. The European Groundwater Pollution Directive stipulates that pesticide levels should be kept below 0.1 µg/l. When sludge is applied to agricultural soil, this level may by far be exceeded for many metals, even if strict limitations are applied to the metal contents of the sludge. This calls for careful assessment of the groundwater consequences of sludge amendment.</p><p>Extensive supplementary material provides many detailed tables, texts and references.</p>


2016 ◽  
Vol 4 (2) ◽  
pp. 407-423 ◽  
Author(s):  
Victoria Naipal ◽  
Christian Reick ◽  
Kristof Van Oost ◽  
Thomas Hoffmann ◽  
Julia Pongratz

Abstract. Currently, the anthropogenic perturbation of the biogeochemical cycles remains unquantified due to the poor representation of lateral fluxes of carbon and nutrients in Earth system models (ESMs). This lateral transport of carbon and nutrients between terrestrial ecosystems is strongly affected by accelerated soil erosion rates. However, the quantification of global soil erosion by rainfall and runoff, and the resulting redistribution is missing. This study aims at developing new tools and methods to estimate global soil erosion and redistribution by presenting and evaluating a new large-scale coarse-resolution sediment budget model that is compatible with ESMs. This model can simulate spatial patterns and long-term trends of soil redistribution in floodplains and on hillslopes, resulting from external forces such as climate and land use change. We applied the model to the Rhine catchment using climate and land cover data from the Max Planck Institute Earth System Model (MPI-ESM) for the last millennium (here AD 850–2005). Validation is done using observed Holocene sediment storage data and observed scaling between sediment storage and catchment area. We find that the model reproduces the spatial distribution of floodplain sediment storage and the scaling behavior for floodplains and hillslopes as found in observations. After analyzing the dependence of the scaling behavior on the main parameters of the model, we argue that the scaling is an emergent feature of the model and mainly dependent on the underlying topography. Furthermore, we find that land use change is the main contributor to the change in sediment storage in the Rhine catchment during the last millennium. Land use change also explains most of the temporal variability in sediment storage in floodplains and on hillslopes.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


1967 ◽  
Vol 06 (01) ◽  
pp. 8-14 ◽  
Author(s):  
M. F. Collen

The utilization of an automated multitest laboratory as a data acquisition center and of a computer for trie data processing and analysis permits large scale preventive medical research previously not feasible. Normal test values are easily generated for the particular population studied. Long-term epidemiological research on large numbers of persons becomes practical. It is our belief that the advent of automation and computers has introduced a new era of preventive medicine.


2014 ◽  
pp. 124-129
Author(s):  
Z. V. Karamysheva

The review contains detailed description of the «Atlas of especially protected natural areas of Saint Petersburg» published in 2013. This publication presents the results of long-term studies of 12 natural protected areas made by a large research team in the years from 2002 to 2013 (see References). The Atlas contains a large number of the historical maps, new satellite images, the original illustrations, detailed texts on the nature of protected areas, summary tables of rare species of vascular plants, fungi and vertebrates recorded in these areas. Special attention is paid to the principles of thematic large-scale mapping. The landscape maps, the vegetation maps as well as the maps of natural processes in landscapes are included. Reviewed Atlas deserves the highest praise.


2000 ◽  
Vol 151 (3) ◽  
pp. 80-83
Author(s):  
Pascal Schneider ◽  
Jean-Pierre Sorg

In and around the state-owned forest of Farako in the region of Sikasso, Mali, a large-scale study focused on finding a compromise allowing the existential and legitimate needs of the population to be met and at the same time conserving the forest resources in the long term. The first step in research was to sketch out the rural socio-economic context and determine the needs for natural resources for autoconsumption and commercial use as well as the demand for non-material forest services. Simultaneously, the environmental context of the forest and the resources available were evaluated by means of inventories with regard to quality and quantity. According to an in-depth comparison between demand and potential, there is a differentiated view of the suitability of the forest to meet the needs of the people living nearby. Propositions for a multipurpose management of the forest were drawn up. This contribution deals with some basic elements of research methodology as well as with results of the study.


Sign in / Sign up

Export Citation Format

Share Document