scholarly journals CORDEX is mainly concerned with using regional climate models/dynamical downscaling

2016 ◽  
Author(s):  
Rasmus Benestad
2011 ◽  
Vol 92 (9) ◽  
pp. 1181-1192 ◽  
Author(s):  
Frauke Feser ◽  
Burkhardt Rockel ◽  
Hans von Storch ◽  
Jörg Winterfeldt ◽  
Matthias Zahn

An important challenge in current climate modeling is to realistically describe small-scale weather statistics, such as topographic precipitation and coastal wind patterns, or regional phenomena like polar lows. Global climate models simulate atmospheric processes with increasingly higher resolutions, but still regional climate models have a lot of advantages. They consume less computation time because of their limited simulation area and thereby allow for higher resolution both in time and space as well as for longer integration times. Regional climate models can be used for dynamical down-scaling purposes because their output data can be processed to produce higher resolved atmospheric fields, allowing the representation of small-scale processes and a more detailed description of physiographic details (such as mountain ranges, coastal zones, and details of soil properties). However, does higher resolution add value when compared to global model results? Most studies implicitly assume that dynamical downscaling leads to output fields that are superior to the driving global data, but little work has been carried out to substantiate these expectations. Here a series of articles is reviewed that evaluate the benefit of dynamical downscaling by explicitly comparing results of global and regional climate model data to the observations. These studies show that the regional climate model generally performs better for the medium spatial scales, but not always for the larger spatial scales. Regional models can add value, but only for certain variables and locations—particularly those influenced by regional specifics, such as coasts, or mesoscale dynamics, such as polar lows. Therefore, the decision of whether a regional climate model simulation is required depends crucially on the scientific question being addressed.


2020 ◽  
Vol 235 ◽  
pp. 104785 ◽  
Author(s):  
Francisco J. Tapiador ◽  
Andrés Navarro ◽  
Raúl Moreno ◽  
José Luis Sánchez ◽  
Eduardo García-Ortega

Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 757
Author(s):  
Lorenzo Sangelantoni ◽  
Antonio Ricchi ◽  
Rossella Ferretti ◽  
Gianluca Redaelli

The purpose of the present study is to assess the large-scale signal modulation produced by two dynamically downscaled Seasonal Forecasting Systems (SFSs) and investigate if additional predictive skill can be achieved, compared to the driving global-scale Climate Forecast System (CFS). The two downscaled SFSs are evaluated and compared in terms of physical values and anomaly interannual variability. Downscaled SFSs consist of two two-step dynamical downscaled ensembles of NCEP-CFSv2 re-forecasts. In the first step, the CFS field is downscaled from 100 km to 60 km over Southern Europe (D01). The second downscaling, driven by the corresponding D01, is performed at 12 km over Central Italy (D02). Downscaling is performed using two different Regional Climate Models (RCMs): RegCM v.4 and WRF 3.9.1.1. SFS skills are assessed over a period of 21 winter seasons (1982–2002), by means of deterministic and probabilistic approach and with a metric specifically designed to isolate downscaling signal over different percentiles of distribution. Considering the temperature fields and both deterministic and probabilistic metrics, regional-scale SFSs consistently improve the original CFS Seasonal Anomaly Signal (SAS). For the precipitation, the added value of downscaled SFSs is mainly limited to the topography driven refinement of precipitation field, whereas the SAS is mainly “inherited” by the driving CFS. The regional-scale SFSs do not seem to benefit from the second downscaling (D01 to D02) in terms of SAS improvement. Finally, WRF and RegCM show substantial differences in both SAS and climatologically averaged fields, highlighting a different impact of the common SST driving field.


2020 ◽  
Author(s):  
Swati Singh ◽  
Kaustubh Salvi ◽  
Subimal Ghosh ◽  
Subhankar Karmakar

<p>The downscaling approaches: Statistical and Dynamic, developed for regional climate predictions, have both advantages and limitations. The statistical downscaling is computationally inexpensive but suffers from the violation of the assumption of stationarity in statistical (predictor-predictand) relationship. The dynamical downscaling is assumed to take care of stationarity but suffers from the biases associated with various sources.  Here we propose a joint approach of both the methods by applying statistical methods: bias correction & statistical downscaling to <strong>Coordinated Regional Climate Downscaling Experiment (</strong>CORDEX) evaluation runs. The evaluation runs are considered as perfect simulations of CORDEX Regional Climate Models (RCMs) with the boundary conditions by ERA-Interim reanalysis data. The statistical methods are also applied to ERA-Interim reanalysis data and compared with observation data for Indian Summer Monsoon characteristics. We evaluate the ability of statistical methods under the non-stationary environment by taking the difference of years close to extreme future runs (RCP8.5) as warmer years and preindustrial runs as cooler years. We find statistical downscaling of CORDEX evaluation runs shows skill in reproducing the signal of non-stationarity. The study can be extended methods by applying statistical downscaling to CORDEX RCMs with the CMIP5 boundary conditions. </p>


Author(s):  
Aristita Busuioc ◽  
Alexandru Dumitrescu

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Climate Science. Please check back later for the full article.The concept of statistical downscaling or empirical-statistical downscaling became a distinct and important scientific approach in climate science in recent decades, when the climate change issue and assessment of climate change impact on various social and natural systems have become international challenges. Global climate models are the best tools for estimating future climate conditions. Even if improvements can be made in state-of-the art global climate models, in terms of spatial resolution and their performance in simulation of climate characteristics, they are still skillful only in reproducing large-scale feature of climate variability, such as global mean temperature or various circulation patterns (e.g., the North Atlantic Oscillation). However, these models are not able to provide reliable information on local climate characteristics (mean temperature, total precipitation), especially on extreme weather and climate events. The main reason for this failure is the influence of local geographical features on the local climate, as well as other factors related to surrounding large-scale conditions, the influence of which cannot be correctly taken into consideration by the current dynamical global models.Impact models, such as hydrological and crop models, need high resolution information on various climate parameters on the scale of a river basin or a farm, scales that are not available from the usual global climate models. Downscaling techniques produce regional climate information on finer scale, from global climate change scenarios, based on the assumption that there is a systematic link between the large-scale and local climate. Two types of downscaling approaches are known: a) dynamical downscaling is based on regional climate models nested in a global climate model; and b) statistical downscaling is based on developing statistical relationships between large-scale atmospheric variables (predictors), available from global climate models, and observed local-scale variables of interest (predictands).Various types of empirical-statistical downscaling approaches can be placed approximately in linear and nonlinear groupings. The empirical-statistical downscaling techniques focus more on details related to the nonlinear models—their validation, strengths, and weaknesses—in comparison to linear models or the mixed models combining the linear and nonlinear approaches. Stochastic models can be applied to daily and sub-daily precipitation in Romania, with a comparison to dynamical downscaling. Conditional stochastic models are generally specific for daily or sub-daily precipitation as predictand.A complex validation of the nonlinear statistical downscaling models, selection of the large-scale predictors, model ability to reproduce historical trends, extreme events, and the uncertainty related to future downscaled changes are important issues. A better estimation of the uncertainty related to downscaled climate change projections can be achieved by using ensembles of more global climate models as drivers, including their ability to simulate the input in downscaling models. Comparison between future statistical downscaled climate signals and those derived from dynamical downscaling driven by the same global model, including a complex validation of the regional climate models, gives a measure of the reliability of downscaled regional climate changes.


2021 ◽  
Author(s):  
Xun Wang ◽  
Marco Otto ◽  
Dieter Scherer

Abstract. Landslide is a major natural hazard in Kyrgyzstan and Tajikistan. Knowledge about atmospheric triggering conditions and climatic disposition of landslides in Kyrgyzstan and Tajikistan is limited, even though this topic has already been investigated thoroughly in other parts of the world. In this study, the newly developed, high-resolution High Asia Refined Analysis version 2 (HAR v2) data set generated by dynamical downscaling was combined with historical landslide inventories to analyze atmospheric conditions that initialized landslides in Kyrgyzstan and Tajikistan. The results indicate the crucial role of snowmelt in landslide triggering processes since it contributes to the initialization of 40 % of landslide events. Objective thresholds for rainfall, snowmelt, as well as the sum of rainfall and snowmelt (rainfall + snowmelt) were defined. Peak intensity (Imax) and accumulated amount (Q) of rainfall + snowmelt events yield the best predictive performance. Mean annual exceedance maps were derived from regional thresholds of Imax = 12.8 mm d−1 and Q = 17.2 mm for rainfall + snowmelt. Mean annual exceedance maps depict climatic disposition and have added value in landslide susceptibility mapping. The results reported in this study highlight the potential of dynamical downscaling products generated by regional climate models in landslide prediction.


2020 ◽  
Author(s):  
Antoine Doury ◽  
Samuel Somot ◽  
Sébastien Gadat ◽  
Aurélien Ribes ◽  
Lola Corre

<p><strong>Statistical Emulators for Regional Climate Models: Preliminary results</strong></p><p>Predicting some robust information on climate at some local geographical scale is of primary importance to assess the impact of the future climate change. But even more important is to quantify the whole range of uncertainties around the evolution of the climate that translates (i) the imperfections of the climate models, (ii) the natural variability variability and (iii) the uncertainties about the future human emissions of greenhouse gases. One of the nowadays tools used to produce future simulations at the local scale is the Regional Climate Models (RCM): they correspond to high resolution climate models used to downscale over a specific region the information simulated by a Global Climate Model (GCM) scenario simulation.</p><p>To cover the full range of uncertainties one should ideally force each RCM with every GCM under different emission scenarios and make several members. It comes down to filling up a huge 4D-matrix [Scenario, GCM, RCM, members]. However regarding the increasing number of climate models (regional and global) and the increasing cost of the RCMs due to their increased complexity and resolution, filling up such matrix becomes unrealistic.</p><p>To address this issue we propose a novel approach to merge statistical and dynamical downscaling techniques. The principle relies on three phases. Firstly, some RCM simulations are performed using the classical dynamical downscaling approach. Then, following the statistical downscaling principle, a statistical model is trained to learn the relationship between the large scale information given by the GCM and the local one produced by the RCM, using the runs previously performed. We call this statistical model an emulator. Finally this emulator allows to downscale more GCMs simulation, at a very reasonable cost in order to get a robust ensemble.</p><p>In this preliminary work we focus on emulating the surface temperature at the daily scale by testing different machine learning methods (RandomForest, Boosting, Neural Network) sometimes coupled with an <em>a-priori</em> signal decomposition. We train and test the emulator with simulations from the ALADIN RCM forced by the CNRM-CM5 GCM over the period 1950-2100. The different methods are discriminated over hidden simulations using skill scores measuring the match between the emulated series and the pseudo-reality RCM series. Day-to-day scores such as correlation or RMSE are used as well as statistical scores to control on the distribution of the predicted series.</p>


2021 ◽  
Author(s):  
Manas Ranjan Mohanty ◽  
Uma Charan Mohanty

Abstract The efficacy of two latest versions of regional climate models (RegCM and WRF) for simulating the Indian summer monsoon (JJAS) is tested in this study. The CFSv2 hindcast outputs are downscaled over the Indian monsoon domain for 11 contrasting monsoon seasons using the regional models. The April start ensembles of the CFSv2 are averaged to generate the initial and lateral boundary conditions for driving the WRF and RegCM. The regional models perform better in simulating the Indian summer monsoon features better than the parent CFSv2 model. The rainfall pattern as well as the intensities are improved with the dynamical downscaling and the errors in the rainfall are minimized over the GCM hindcast. On comparing the two regional models, the RegCM overestimates the rainfall during the excess and normal monsoon seasons. The RCMs improve the skill of rainfall prediction as compared to the GCM and WRF shows better skill in particular. One peculiar finding of this study is that the daily rainfall biases averaged over all the years of simulation shows that the two RCMs show similar biases with RegCM showing stronger biases occasionally. It may be implied that the errors from GCM in the form of the ICBC might be influencing the simulation in the RCMs. The upper air and surface parameters analysis shows that the WRF performs better in representing the semi-permanent features of the Indian summer monsoon which may be helping in improving the rainfall over the RegCM. The wind pattern as well as the relative humidity along the vertical column of the atmosphere are captured better in the WRF model. Diagnostics of CAPE & vertically integrated moisture transport supports the finding of the rainfall being simulated better in the WRF model.


2017 ◽  
Vol 145 (10) ◽  
pp. 4303-4311 ◽  
Author(s):  
Benjamin Schaaf ◽  
Hans von Storch ◽  
Frauke Feser

Spectral nudging is a method that was developed to constrain regional climate models so that they reproduce the development of the large-scale atmospheric state, while permitting the formation of regional-scale details as conditioned by the large scales. Besides keeping the large-scale development in the interior close to a given state, the method also suppresses the emergence of ensemble variability. The method is mostly applied to reconstructions of past weather developments in regions with an extension of typically 1000–8000 km. In this article, the authors examine if spectral nudging is having an effect on simulations with model regions of the size of about 700 km × 500 km at midlatitudes located mainly over flat terrain. First two pairs of simulations are compared, two runs each with and without spectral nudging, and it is found that the four simulations are very similar, without systematic or intermittent phases of divergence. Smooth fields, which are mainly determined by spatial patterns, such as air pressure, show hardly any differences, while small-scale and heterogeneous fields such as precipitation vary strongly, mostly on the gridpoint scale, irrespective if spectral nudging is employed or not. It is concluded that the application of spectral nudging has little effect on the simulation when the model region is relatively small.


Sign in / Sign up

Export Citation Format

Share Document