scholarly journals Evaluating the physical and biogeochemical state of the global ocean component of UKESM1 in CMIP6 Historical simulations

2020 ◽  
Author(s):  
Andrew Yool ◽  
Julien Palmiéri ◽  
Colin G. Jones ◽  
Lee de Mora ◽  
Till Kuhlbrodt ◽  
...  

Abstract. The ocean plays a key role in modulating the climate of the Earth system (ES). At the present time it is also a major sink both for the carbon dioxide (CO2) released by human activities as well as for the excess heat driven by the resulting atmospheric greenhouse effect. Understanding the ocean's role in these processes is critical for model projections of future change and its potential impacts on human societies. A necessary first step in assessing the credibility of such future projections is an evaluation of their performance against the present state of the ocean. Here we use a range of observational properties to validate the physical and biogeochemical performance of the ocean component of UKESM1, a new Earth system (ESM) for CMIP6 built upon the HadGEM3 physical climate model. Analysis focuses on the realism of the ocean's physical state and circulation, its key elemental cycles, and its marine productivity. UKESM1 generally performs well across a broad spectrum of properties, but it exhibits a number of notable biases. Physically, these include a global warm bias inherited from model spin-up, excess northern sea-ice but insufficient southern sea-ice, and sluggish interior circulation. Biogeochemical biases found include shallow remineralisation of sinking organic matter, excessive iron stress in regions such as the Equatorial Pacific, and generally lower surface alkalinity that results in decreased surface and interior dissolved inorganic carbon (DIC) concentrations. The mechanisms driving these biases are explored to identify consequences for the behaviour of UKESM1 under future climate scenarios, and avenues for model improvement. Finally, across key biogeochemical properties, UKESM1 improves in performance relative to its CMIP5 precursor, and compares favourably to fellow members of the CMIP6 ensemble.

2021 ◽  
Vol 14 (6) ◽  
pp. 3437-3472
Author(s):  
Andrew Yool ◽  
Julien Palmiéri ◽  
Colin G. Jones ◽  
Lee de Mora ◽  
Till Kuhlbrodt ◽  
...  

Abstract. The ocean plays a key role in modulating the climate of the Earth system (ES). At the present time it is also a major sink both for the carbon dioxide (CO2) released by human activities and for the excess heat driven by the resulting atmospheric greenhouse effect. Understanding the ocean's role in these processes is critical for model projections of future change and its potential impacts on human societies. A necessary first step in assessing the credibility of such future projections is an evaluation of their performance against the present state of the ocean. Here we use a range of observational fields to validate the physical and biogeochemical performance of the ocean component of UKESM1, a new Earth system model (ESM) for CMIP6 built upon the HadGEM3-GC3.1 physical climate model. Analysis focuses on the realism of the ocean's physical state and circulation, its key elemental cycles, and its marine productivity. UKESM1 generally performs well across a broad spectrum of properties, but it exhibits a number of notable biases. Physically, these include a global warm bias inherited from model spin-up, excess northern sea ice but insufficient southern sea ice and sluggish interior circulation. Biogeochemical biases found include shallow remineralization of sinking organic matter, excessive iron stress in regions such as the equatorial Pacific, and generally lower surface alkalinity that results in decreased surface and interior dissolved inorganic carbon (DIC) concentrations. The mechanisms driving these biases are explored to identify consequences for the behaviour of UKESM1 under future climate change scenarios and avenues for model improvement. Finally, across key biogeochemical properties, UKESM1 improves in performance relative to its CMIP5 precursor and performs well alongside its fellow members of the CMIP6 ensemble.


2021 ◽  
Author(s):  
Ralf Döscher ◽  
Mario Acosta ◽  
Andrea Alessandri ◽  
Peter Anthoni ◽  
Almut Arneth ◽  
...  

Abstract. The Earth System Model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different HPC systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behaviour and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.


2021 ◽  
Author(s):  
Bouwe Andela ◽  
Fakhereh Alidoost ◽  
Lukas Brunner ◽  
Jaro Camphuijsen ◽  
Bas Crezee ◽  
...  

<p>The Earth System Model Evaluation Tool (ESMValTool) is a free and open-source community diagnostic and performance metrics tool for the evaluation of Earth system models such as those participating in the Coupled Model Intercomparison Project (CMIP). Version 2 of the tool (Righi et al. 2020, www.esmvaltool.org) features a brand new design composed of a core that finds and processes data according to a ‘recipe’ and an extensive collection of ready-to-use recipes and associated diagnostic codes for reproducing results from published papers. Development and discussion of the tool (mostly) takes place in public on https://github.com/esmvalgroup and anyone with an interest in climate model evaluation is welcome to join there.</p><p> </p><p>Since the initial release of version 2 in the summer of 2020, many improvements have been made to the tool. It is now more user friendly with extensive documentation available on docs.esmvaltool.org and a step by step online tutorial. Regular releases, currently planned three times a year, ensure that recent contributions become available quickly while still ensuring a high level of quality control. The tool can be installed from conda, but portable docker and singularity containers are also available.</p><p> </p><p>Recent new features include a more user-friendly command-line interface, citation information per figure including CMIP6 data citation using ES-DOC, more and faster preprocessor functions that require less memory, automatic corrections for a larger number of CMIP6 datasets, support for more observational and reanalysis datasets, and more recipes and diagnostics.</p><p> </p><p>The tool is now also more reliable, with improved automated testing through more unit tests for the core, as well as a recipe testing service running at DKRZ for testing the scientific recipes and diagnostics that are bundled into the tool. The community maintaining and developing the tool is growing, making the project less dependent on individual contributors. There are now technical and scientific review teams that review new contributions for technical quality and scientific correctness and relevance respectively, two new principal investigators for generating a larger support base in the community, and a newly created user engagement team that is taking care of improving the overall user experience.</p>


Author(s):  
Xiao Dong ◽  
Jiangbo Jin ◽  
Hailong Liu ◽  
He Zhang ◽  
Minghua Zhang ◽  
...  

AbstractAs a member of the Chinese modeling groups, the coupled ocean-ice component of the Chinese Academy of Sciences’ Earth System Model, version 2.0 (CAS-ESM2.0), is taking part in the Ocean Model Intercomparison Project Phase 1 (OMIP1) experiment of phase 6 of the Coupled Model Intercomparison Project (CMIP6). The simulation was conducted, and monthly outputs have been published on the ESGF (Earth System Grid Federation) data server. In this paper, the experimental dataset is introduced, and the preliminary performances of the ocean model in simulating the global ocean temperature, salinity, sea surface temperature, sea surface salinity, sea surface height, sea ice, and Atlantic Meridional Overturning Circulation (AMOC) are evaluated. The results show that the model is at quasi-equilibrium during the integration of 372 years, and performances of the model are reasonable compared with observations. This dataset is ready to be downloaded and used by the community in related research, e.g., multi-ocean-sea-ice model performance evaluation and interannual variation in oceans driven by prescribed atmospheric forcing.


2018 ◽  
Vol 33 (6) ◽  
pp. 325-331
Author(s):  
Ilya A. Chernov ◽  
Nikolay G. Iakovlev

Abstract In the present paper we consider the first results of modelling the World Ocean biogeochemistry system within the framework of the Earth system model: a global atmosphere-ocean-ice-land-biogeochemistry model. It is based on the INMCM climate model (version INMCM39) coupled with the pelagic ecosystem model BFM. The horizontal resolution was relatively low: 2∘ × 2.5∘ for the ‘longitude’ and ‘latitude’ in transformed coordinates with the North Pole moved to land, 33 non-equidistant σ-horizons, 1 hour time step. We have taken into account 54 main rivers worldwide with run–off supplied by the atmosphere submodel. The setup includes nine plankton groups, 60 tracers in total. Some components sink with variable speed. We discuss challenges of coupling the BFM with the σ-coordinate ocean model. The presented results prove that the model output is realistic in comparison with the observed data, the numerical efficiency is high enough, and the coupled model may serve as a basis for further simulations of the long-term climate change.


2014 ◽  
Vol 7 (6) ◽  
pp. 8975-9015
Author(s):  
E. M. Knudsen ◽  
J. E. Walsh

Abstract. Metrics of storm activity in Northern Hemisphere high- and midlatitudes are evaluated from historical output and future projections by the Norwegian Earth System Model (NorESM1-M) coupled global climate model. The European Re-Analysis Interim (ERA-Interim) and the Community Climate System Model (CCSM4), a global climate model of the same vintage as NorESM1-M, provide benchmarks for comparison. The focus is on the autumn and early winter (September through December), the period when the ongoing and projected Arctic sea ice retreat is greatest. Storm tracks derived from a vorticity-based algorithm for storm identification are reproduced well by NorESM1-M, although the tracks are somewhat better resolved in the higher-resolution ERA-Interim and CCSM4. The tracks are projected to shift polewards in the future as climate changes under the Representative Concentration Pathway (RCP) forcing scenarios. Cyclones are projected to become generally more intense in the high-latitudes, especially over the Alaskan region, although in some other areas the intensity is projected to decrease. While projected changes in track density are less coherent, there is a general tendency towards less frequent storms in midlatitudes and more frequent storms in high-latitudes, especially the Baffin Bay/Davis Strait region. Autumn precipitation is projected to increase significantly across the entire high-latitudes. Together with the projected increases in storm intensity and sea level and the loss of sea ice, this increase in precipitation implies a greater vulnerability to coastal flooding and erosion, especially in the Alaskan region. The projected changes in storm intensity and precipitation (as well as sea ice and sea level pressure) scale generally linearly with the RCP value of the forcing and with time through the 21st century.


2017 ◽  
Author(s):  
Ben A. Ward ◽  
Jamie D. Wilson ◽  
Ros M. Death ◽  
Fanny M. Monteiro ◽  
Andrew Yool ◽  
...  

Abstract. We present an extension to the cGENIE Earth System model that explicitly accounts for the growth and interaction of an arbitrary number of plankton species. The new package (ECOGEM) replaces the implicit, flux-based, parameterisation of the plankton community currently employed, with explicitly resolved plankton populations and ecological dynamics. In ECOGEM, any number of plankton species, with ecophysiological traits (e.g. growth and grazing rates) assigned according to organism size and functional group (e.g. phytoplankton and zooplankton) can be incorporated at run-time. We illustrate the capability of the marine ecology enabled Earth system model (EcoGENIE) by comparing results from one configuration of ECOGEM (with eight generic phytoplankton and zooplankton size classes) to climatological and seasonal observations. We find that the new ecological components of the model show reasonable agreement with both global-scale climatological and local-scale seasonal data. We also compare EcoGENIE results to a the existing biogeochemical incarnation of cGENIE. We find that the resulting global-scale distributions of phosphate, iron, dissolved inorganic carbon, alkalinity and oxygen are similar for both iterations of the model. A slight deterioration in some fields in EcoGENIE (relative to the data) is observed, although we make no attempt to re-tune the overall marine cycling of carbon and nutrients here. The increased capabilities of EcoGENIE in this regard will enable future exploration of the ecological community on much longer timescales than have previously been examined in global ocean ecosystem models and particularly for past climates and global biogeochemical cycles.


2018 ◽  
Vol 11 (10) ◽  
pp. 4241-4267 ◽  
Author(s):  
Ben A. Ward ◽  
Jamie D. Wilson ◽  
Ros M. Death ◽  
Fanny M. Monteiro ◽  
Andrew Yool ◽  
...  

Abstract. We present an extension to the carbon-centric Grid Enabled Integrated Earth system model (cGEnIE) that explicitly accounts for the growth and interaction of an arbitrary number of plankton species. The new package (ECOGEM) replaces the implicit, flux-based parameterisation of the plankton community currently employed, with explicitly resolved plankton populations and ecological dynamics. In ECOGEM, any number of plankton species, with ecophysiological traits (e.g. growth and grazing rates) assigned according to organism size and functional group (e.g. phytoplankton and zooplankton) can be incorporated at runtime. We illustrate the capability of the marine ecology enabled Earth system model (EcoGEnIE) by comparing results from one configuration of ECOGEM (with eight generic phytoplankton and zooplankton size classes) to climatological and seasonal observations. We find that the new ecological components of the model show reasonable agreement with both global-scale climatological and local-scale seasonal data. We also compare EcoGEnIE results to the existing biogeochemical incarnation of cGEnIE. We find that the resulting global-scale distributions of phosphate, iron, dissolved inorganic carbon, alkalinity, and oxygen are similar for both iterations of the model. A slight deterioration in some fields in EcoGEnIE (relative to the data) is observed, although we make no attempt to re-tune the overall marine cycling of carbon and nutrients here. The increased capabilities of EcoGEnIE in this regard will enable future exploration of the ecological community on much longer timescales than have previously been examined in global ocean ecosystem models and particularly for past climates and global biogeochemical cycles.


2021 ◽  
Author(s):  
Fatemeh Chegini ◽  
Lennart Ramme ◽  
Jöran März ◽  
Katharina Six ◽  
Daniel Burt ◽  
...  

<div>Ocean biogeochemistry as part of the Earth system impacts the uptake of atmospheric CO<sub>2</sub> and storage of carbon in the ocean. In the ICON-O (Icosahedral non-hydrostatic general circulation model) ocean model, ocean biogeochemistry is represented by the HAMburg Ocean Carbon Cycle model (HAMOCC; Ilyina et al. 2013, Mauritsen et al. 2019, Maerz et al. 2020). Here, we present the results of an ongoing effort to tune HAMOCC (i.e. adapt parameters within the uncertainty range) to accommodate the ocean circulation simulated by ICON-O.</div><div>The tuning of biogeochemical models, including HAMOCC, has previously been an iterative, and a rather random process combining expert knowledge and a suite of parameter testings. A documented, systematic procedure, describing how to tune these models is lacking. Therefore, while tuning HAMOCC in ICON-O, we aim at filling this gap by structuring the process and documenting the steps taken to tune a biogeochemistry model in a global general ocean circulation model.</div><div>The ocean circulation has a large impact on the distribution of biogeochemical tracers, as biases in the circulation will, for example, impact the upwelling of nutrients or the CO<sub>2</sub> exchange with the atmosphere. We investigate the impact of physical parameterization such as the Gent-McWilliam eddy parameterization and the vertical mixing scheme on the choice of HAMOCC tuning parameters. We then compare the spatial distribution of major state variables such as nutrients and alkalinity to observational data ( WOA; Garcia et al 2013, GLODAP; Key et al 2004) and evaluate the key tendencies such as CO<sub>2</sub> surface fluxes and attenuation of particulate organic matter fluxes. Furthermore, we discuss the tuning steps, choices of the tuning parameters and their impact on the simulated biogeochemistry. The envisioned outcome of this work is a tuned ocean biogeochemistry component for the here used ICON-O model and a more generalized tuning procedure that can be applied to other models or HAMOCC in different model configurations (coupled runs, different resolution).</div><div> </div><p>Garcia, H. E., et al. 2014: World Ocean Atlas 2013, NOAA Atlas NESDIS 76, Volume4: Dissolved Inorganic Nutrients (phosphate, nitrate, silicate), 25pp.</p><p>lyina, T., et al. 2013: Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations, J. Adv. Model. Earth Sy., 5, .</p><p>Key, R., et al. 2004: A global ocean carbon climatology: Results from Global Data Analysis Project, Global Biogeochem. Cycles, 18, 4, https://doi.org/10.1029/2004GB002247.</p><p>Maerz et al. 2020: Microstructure and composition of marine aggregates as co-determinants for vertical particulate organic carbon transfer in the global ocean, Biogeosciences, 17, 7, https://doi.org/10.5194/bg-17-1765-2020.</p><p>Mauritsen, T., et al. 2019: Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO<sub>2</sub>, J. Adv. Model. Earth Sy., 11, https://doi.org/10.1029/2018MS001400.</p><p> </p>


2016 ◽  
Vol 9 (7) ◽  
pp. 2335-2355 ◽  
Author(s):  
Erlend M. Knudsen ◽  
John E. Walsh

Abstract. Metrics of storm activity in Northern Hemisphere high and midlatitudes are evaluated from historical output and future projections by the Norwegian Earth System Model (NorESM1-M) coupled global climate model. The European Re-Analysis Interim (ERA-Interim) and the Community Climate System Model (CCSM4), a global climate model of the same vintage as NorESM1-M, provide benchmarks for comparison. The focus is on the autumn and early winter (September through December) – the period when the ongoing and projected Arctic sea ice retreat is the greatest. Storm tracks derived from a vorticity-based algorithm for storm identification are reproduced well by NorESM1-M, although the tracks are somewhat better resolved in the higher-resolution ERA-Interim and CCSM4. The tracks show indications of shifting polewards in the future as climate changes under the Representative Concentration Pathway (RCP) forcing scenarios. Cyclones are projected to become generally more intense in the high latitudes, especially over the Alaskan region, although in some other areas the intensity is projected to decrease. While projected changes in track density are less coherent, there is a general tendency towards less frequent storms in midlatitudes and more frequent storms in high latitudes, especially the Baffin Bay/Davis Strait region in September. Autumn precipitation is projected to increase significantly across the entire high latitudes. Together with the projected loss of sea ice and increases in storm intensity and sea level, this increase in precipitation implies a greater vulnerability to coastal flooding and erosion, especially in the Alaskan region. The projected changes in storm intensity and precipitation (as well as sea ice and sea level pressure) scale generally linearly with the RCP value of the forcing and with time through the 21st century.


Sign in / Sign up

Export Citation Format

Share Document