scholarly journals PARASO, a circum-Antarctic fully-coupled ice-sheet - ocean - sea-ice - atmosphere - land model involving f.ETISh1.7, NEMO3.6, LIM3.6, COSMO5.0 and CLM4.5

2021 ◽  
Author(s):  
Charles Pelletier ◽  
Thierry Fichefet ◽  
Hugues Goosse ◽  
Konstanze Haubner ◽  
Samuel Helsen ◽  
...  

Abstract. We introduce PARASO, a novel five-component fully-coupled regional climate model over an Antarctic circumpolar domain covering the full Southern Ocean. The state-of-the-art models used are f.ETISh1.7 (ice sheet), NEMO3.6 (ocean), LIM3.6 (sea ice), COSMO5.0 (atmosphere) and CLM4.5 (land), which are here run at an horizontal resolution close to 1/4°. One key-feature of this tool resides in a novel two-way coupling interface for representing ocean – ice-sheet interactions, through explicitly resolved ice-shelf cavities. The impact of atmospheric processes on the Antarctic ice sheet is also conveyed through computed COSMO-CLM – f.ETISh surface mass exchanges. In this technical paper, we briefly introduce each model's configuration and document the developments that were carried out in order to establish PARASO. The new offline-based NEMO – f.ETISh coupling interface is thoroughly described. Our developments also include a new surface tiling approach to combine open-ocean and sea-ice covered cells within COSMO, which was required to make this model relevant in the context of coupled simulations in polar regions. We present results from a 2000–2001 coupled two-year experiment. PARASO is numerically stable and fully operational. The 2-year simulation conducted without fine tuning of the model reproduced the main expected features, although remaining systematic biases provide perspectives for further adjustment and development.

2020 ◽  
Author(s):  
Christiaan T. van Dalum ◽  
Willem Jan van de Berg ◽  
Michiel R. van den Broeke

Abstract. This study evaluates the impact of a new snow and ice albedo and radiative transfer scheme on the surface mass and energy budget for the Greenland ice sheet in the latest version of the regional climate model RACMO2, version 2.3p3. We also evaluate the modeled (sub)surface temperature and snow melt, as subsurface heating by radiation penetration now occurs. The results are compared to the previous model version and are evaluated against stake measurements and automatic weather station data of the K-transect and PROMICE projects. In addition, subsurface snow temperature profiles are compared at the K-transect, Summit and southeast Greenland. The surface mass balance is in good agreement with observations, and only changes considerably with respect to the previous RACMO2 version around the ice margins and in the percolation zone. Snow melt and refreezing, on the other hand, are changed more substantially in various regions due to the changed albedo representation, subsurface energy absorption and melt water percolation. Internal heating leads to considerably higher snow temperatures in summer, in agreement with observations, and introduces a shallow layer of subsurface melt.


2020 ◽  
Author(s):  
Pierre-Vincent Huot ◽  
Thierry Fichefet ◽  
Christoph Kittel ◽  
Nicolas Jourdain ◽  
Xavier Fettweis

<p>Coastal polynyas of the Southern Ocean, such as the Mertz Glacier Polynya, are paramount features of the polar climate. They allow for exchanges of heat, momentum and moisture between the atmosphere and ocean where sea ice usually prevents such interactions. Polynyas are believed to have a profound impact on polar and global climate, thanks to their sustained sea ice production and the associated formation of Dense Shelf Waters. Less is known, however, about the impact of polynyas on the atmosphere. Changes in air properties and winds induced by heat and moisture flux could for instance affect precipitation regime over the ice sheet or sea ice. As the formation and evolution of coastal polynyas are tied to the state of the atmosphere, such changes can also induce important feedbacks to polynyas dynamics. Such processes have almost never been studied, whether on the field or with the help of coupled models. Here, we propose to describe the behavior of a coastal polynya and its relationship with the ocean and atmosphere. To do so, we developed a regional coupled model of the ocean, sea ice and atmosphere (including interactive basal melt of ice shelves) and applied it to the Adélie Land area, in East Antarctica. The dynamics of the Mertz Glacier Polynya is described, together with its impact on the atmosphere, sea ice growth, dense water production and ice shelf melt. To assess the importance of potential feedbacks, we compare the dynamics of the polynya from the coupled model to a forced ocean-sea ice model. We then use the regional coupled model to investigate the implications of the Mertz ice tongue calving in early 2010 which led to a drastic decrease of the Mertz Glacier Polynya extent. This experiment aims at investigating the sensitivity of the atmosphere to the activity of the polynya and to evaluate the impact of the calving on regional climate. This work improves the understanding of the Mertz Glacier Polynya dynamics, and of the impact of coastal polynyas on polar climate. It also constitutes an additional step in the modelling of the polar regions in Earth System Models.</p>


2015 ◽  
Vol 9 (3) ◽  
pp. 821-835 ◽  
Author(s):  
M. Bügelmayer ◽  
D. M. Roche ◽  
H. Renssen

Abstract. Icebergs have a potential impact on climate since they release freshwater over a widespread area and cool the ocean due to the take-up of latent heat. Yet, so far, icebergs have never been modelled using an ice-sheet model coupled to a global climate model. Thus, in climate models their impact on climate has been restricted to the ocean. In this study, we investigate the effect of icebergs on the climate of the mid- to high latitudes and the Greenland ice sheet itself within a fully coupled ice-sheet (GRenoble model for Ice Shelves and Land Ice, or GRISLI)–earth-system (iLOVECLIM) model set-up under pre-industrial climate conditions. This set-up enables us to dynamically compute the calving sites as well as the ice discharge and to close the water cycle between the climate and the cryosphere model components. Further, we analyse the different impact of moving icebergs compared to releasing the ice discharge at the calving sites directly. We performed a suite of sensitivity experiments to investigate the individual role of the different factors that influence the impact of the ice release on the ocean: release of ice discharge as icebergs versus as freshwater fluxes, and freshening and latent heat effects. We find that icebergs enhance the sea-ice thickness around Greenland, thereby cooling the atmosphere and increasing the Greenland ice sheet's height. Melting the ice discharge directly at the calving sites, thereby cooling and freshening the ocean locally, results in a similar ice-sheet configuration and climate as the simulation where icebergs are explicitly modelled. Yet, the simulation where the ice discharge is released into the ocean at the calving sites while taking up the latent heat homogeneously underestimates the cooling effect close to the ice-sheet margin and overestimates it further away, thereby causing a reduced ice-sheet thickness in southern Greenland. We conclude that in our fully coupled atmosphere–ocean–cryosphere model set-up the spatial distribution of the take-up of latent heat related to iceberg melting has a bigger impact on the climate than the input of the iceberg's meltwater. Moreover, we find that icebergs affect the ice sheet's geometry even under pre-industrial equilibrium conditions due to their enhancing effect on sea ice, which causes a colder prevailing climate.


2016 ◽  
Vol 10 (5) ◽  
pp. 2361-2377 ◽  
Author(s):  
Brice Noël ◽  
Willem Jan van de Berg ◽  
Horst Machguth ◽  
Stef Lhermitte ◽  
Ian Howat ◽  
...  

Abstract. This study presents a data set of daily, 1 km resolution Greenland ice sheet (GrIS) surface mass balance (SMB) covering the period 1958–2015. Applying corrections for elevation, bare ice albedo and accumulation bias, the high-resolution product is statistically downscaled from the native daily output of the polar regional climate model RACMO2.3 at 11 km. The data set includes all individual SMB components projected to a down-sampled version of the Greenland Ice Mapping Project (GIMP) digital elevation model and ice mask. The 1 km mask better resolves narrow ablation zones, valley glaciers, fjords and disconnected ice caps. Relative to the 11 km product, the more detailed representation of isolated glaciated areas leads to increased precipitation over the southeastern GrIS. In addition, the downscaled product shows a significant increase in runoff owing to better resolved low-lying marginal glaciated regions. The combined corrections for elevation and bare ice albedo markedly improve model agreement with a newly compiled data set of ablation measurements.


2015 ◽  
Vol 9 (5) ◽  
pp. 1831-1844 ◽  
Author(s):  
B. Noël ◽  
W. J. van de Berg ◽  
E. van Meijgaard ◽  
P. Kuipers Munneke ◽  
R. S. W. van de Wal ◽  
...  

Abstract. We discuss Greenland Ice Sheet (GrIS) surface mass balance (SMB) differences between the updated polar version of the RACMO climate model (RACMO2.3) and the previous version (RACMO2.1). Among other revisions, the updated model includes an adjusted rainfall-to-snowfall conversion that produces exclusively snowfall under freezing conditions; this especially favours snowfall in summer. Summer snowfall in the ablation zone of the GrIS has a pronounced effect on melt rates, affecting modelled GrIS SMB in two ways. By covering relatively dark ice with highly reflective fresh snow, these summer snowfalls have the potential to locally reduce melt rates in the ablation zone of the GrIS through the snow-albedo-melt feedback. At larger scales, SMB changes are driven by differences in orographic precipitation following a shift in large-scale circulation, in combination with enhanced moisture to precipitation conversion for warm to moderately cold conditions. A detailed comparison of model output with observations from automatic weather stations, ice cores and ablation stakes shows that the model update generally improves the simulated SMB-elevation gradient as well as the representation of the surface energy balance, although significant biases remain.


2012 ◽  
Vol 6 (2) ◽  
pp. 255-272 ◽  
Author(s):  
M. M. Helsen ◽  
R. S. W. van de Wal ◽  
M. R. van den Broeke ◽  
W. J. van de Berg ◽  
J. Oerlemans

Abstract. It is notoriously difficult to couple surface mass balance (SMB) results from climate models to the changing geometry of an ice sheet model. This problem is traditionally avoided by using only accumulation from a climate model, and parameterizing the meltwater run-off as a function of temperature, which is often related to surface elevation (Hs). In this study, we propose a new strategy to calculate SMB, to allow a direct adjustment of SMB to a change in ice sheet topography and/or a change in climate forcing. This method is based on elevational gradients in the SMB field as computed by a regional climate model. Separate linear relations are derived for ablation and accumulation, using pairs of Hs and SMB within a minimum search radius. The continuously adjusting SMB forcing is consistent with climate model forcing fields, also for initially non-glaciated areas in the peripheral areas of an ice sheet. When applied to an asynchronous coupled ice sheet – climate model setup, this method circumvents traditional temperature lapse rate assumptions. Here we apply it to the Greenland Ice Sheet (GrIS). Experiments using both steady-state forcing and glacial-interglacial forcing result in realistic ice sheet reconstructions.


2020 ◽  
Author(s):  
Christiaan van Dalum ◽  
Willem Jan van de Berg ◽  
Stef Lhermitte ◽  
Michiel van den Broeke

<p>Snow and ice albedo schemes in present day climate models often lack a sophisticated radiation penetration scheme and are limited to a broadband albedo. In this study, we evaluate a new snow albedo scheme in the regional climate model RACMO2 that uses the two-stream radiative transfer in snow model TARTES and the spectral-to-narrowband albedo module SNOWBAL for the Greenland ice sheet. Additionally, the bare ice albedo parameterization has been updated. The snow and ice albedo output of the updated version of RACMO2, referred to as RACMO2.3p3, is evaluated using PROMICE and K-transect in-situ data and MODIS remote-sensing observations. Generally, the RACMO2.3p3 albedo is in very good agreement with satellite observations, leading to a domain-averaged bias of only -0.012. Some discrepancies are, however, observed for regions close to the ice margin. Compared to the previous iteration RACMO2.3p2, the albedo of RACMO2.3p3 is considerably higher in the bare ice zone during the ablation season, as atmospheric conditions now alter the bare ice albedo. For most other regions, however, the albedo of RACMO2.3p3 is lower due to spectral effects, radiation penetration, snow metamorphism or a delayed firn-ice transition. Furthermore, a white-out effect during cloudy conditions is captured and the snow albedo shows a low sensitivity to low soot concentrations. The surface mass balance of RACMO2.3p3 compares well with observations. Subsurface heating, however, now leads to increased melt and refreezing in south Greenland, changing the snow structure.</p>


2015 ◽  
Vol 56 (70) ◽  
pp. 175-183 ◽  
Author(s):  
Andrew Zammit-Mangion ◽  
Jonathan L. Bamber ◽  
Nana W. Schoen ◽  
Jonathan C. Rougier

AbstractCombinations of various numerical models and datasets with diverse observation characteristics have been used to assess the mass evolution of ice sheets. As a consequence, a wide range of estimates have been produced using markedly different methodologies, data, approximation methods and model assumptions. Current attempts to reconcile these estimates using simple combination methods are unsatisfactory, as common sources of errors across different methodologies may not be accurately quantified (e.g. systematic biases in models). Here we provide a general approach which deals with this issue by considering all data sources simultaneously, and, crucially, by reducing the dependence on numerical models. The methodology is based on exploiting the different space–time characteristics of the relevant ice-sheet processes, and using statistical smoothing methods to establish the causes of the observed change. In omitting direct dependence on numerical models, the methodology provides a novel means for assessing glacio-isostatic adjustment and climate models alike, using remote-sensing datasets. This is particularly advantageous in Antarctica, where in situ measurements are difficult to obtain. We illustrate the methodology by using it to infer Antarctica’s mass trend from 2003 to 2009 and produce surface mass-balance anomaly estimates to validate the RACMO2.1 regional climate model.


2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
Klaus Dethloff ◽  
Ksenia Glushak ◽  
Annette Rinke ◽  
Dörthe Handorf

The regional climate model HIRHAM has been applied to Antarctica driven at the lateral and lower boundaries by European Reanalysis data ERA-40 for the period 1958–1998. Simulations over 4 decades, carried out with a horizontal resolution of 50 km, deliver a realistic simulation of the Antarctic atmospheric circulation, synoptic-scale pressure systems, and the spatial distribution of precipitation minus sublimation (P-E) structures. The simulated P-E pattern is in qualitative agreement with glaciological estimates. The estimated (P-E) trends demonstrate surfacemass accumulation increase at the West Antarctic coasts and reductions in parts of East Antarctica. The influence of the Antarctic Oscillation (AAO) on the near-surface climate and the surface mass accumulation over Antarctica have been investigated on the basis of ERA-40 data and HIRHAM simulations. It is shown that the regional accumulation changes are largely driven by changes in the transient activity around the Antarctic coasts due to the varying AAO phases. During positive AAO, more transient pressure systems travelling towards the continent, and Western Antarctica and parts of South-Eastern Antarctica gain more precipitation and mass. Over central Antarctica the prevailing anticyclone causes a strengthening of polar desertification connected with a reduced surface mass balance in the northern part of East Antarctica.


Sign in / Sign up

Export Citation Format

Share Document