scholarly journals A scale-dependent blending scheme for WRFDA: impact on regional weather forecasting

2014 ◽  
Vol 7 (4) ◽  
pp. 1819-1828 ◽  
Author(s):  
H. Wang ◽  
X.-Y. Huang ◽  
D. Xu ◽  
J. Liu

Abstract. Due to limitation of the domain size and limited observations used in regional data assimilation and forecasting systems, regional forecasts suffer a general deficiency in effectively representing large-scale features such as those in global analyses and forecasts. In this paper, a scale-dependent blending scheme using a low-pass Raymond tangent implicit filter was implemented in the Data Assimilation system of the Weather Research and Forecasting model (WRFDA) to reintroduce large-scale weather features from global model analysis into the WRFDA analysis. The impact of the blending method on regional forecasts was assessed by conducting full cycle data assimilation and forecasting experiments for a 2-week-long period in September 2012. It is found that there are obvious large-scale forecast errors in the regional WRFDA system running in full cycle mode without the blending scheme. The scale-dependent blending scheme can efficiently reintroduce the large-scale information from National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) analyses, and keep small-scale information from WRF analyses. The blending scheme is shown to reduce analysis and forecasting error of wind, temperature and humidity up to 24 h compared to the full cycle experiments without blending. It is also shown to increase precipitation prediction skills in the first 6 h forecasts.

2014 ◽  
Vol 7 (2) ◽  
pp. 2455-2482
Author(s):  
H. Wang ◽  
X.-Y. Huang ◽  
D. Xu ◽  
J. Liu

Abstract. Due to limitation of the domain size and limited observations used in regional data assimilation and forecasting systems, regional forecasts suffer a general deficiency in effectively representing large-scale features such as those in global analyses and forecasts. In this paper, a scale-dependent blending scheme using a low-pass Raymond tangent implicit filter was implemented in the Data Assimilation system of the Weather Research and Forecasting model (WRFDA) to re-introduce large-scale weather features from global model analysis into the WRFDA analysis. The impact of the blending method on regional forecasts was assessed by conducting full cycle data assimilation and forecasting experiments for a two-week long period in September 2012. It is found that there are obvious large-scale forecast errors in the regional WRFDA system running in full cycle mode without the blending scheme. The scale-dependent blending scheme can efficiently re-introduce the large-scale information from National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) analyses, and keep small-scale information from WRF analyses. The blending scheme is shown to reduce analysis and forecasting error of wind, temperature and humidity up to 24 h compared to the full cycle experiments without blending. It is also shown to increase precipitation prediction skills in the first 6 h forecasts.


2012 ◽  
Vol 27 (1) ◽  
pp. 124-140 ◽  
Author(s):  
Bin Liu ◽  
Lian Xie

Abstract Accurately forecasting a tropical cyclone’s (TC) track and intensity remains one of the top priorities in weather forecasting. A dynamical downscaling approach based on the scale-selective data assimilation (SSDA) method is applied to demonstrate its effectiveness in TC track and intensity forecasting. The SSDA approach retains the merits of global models in representing large-scale environmental flows and regional models in describing small-scale characteristics. The regional model is driven from the model domain interior by assimilating large-scale flows from global models, as well as from the model lateral boundaries by the conventional sponge zone relaxation. By using Hurricane Felix (2007) as a demonstration case, it is shown that, by assimilating large-scale flows from the Global Forecast System (GFS) forecasts into the regional model, the SSDA experiments perform better than both the original GFS forecasts and the control experiments, in which the regional model is only driven by lateral boundary conditions. The overall mean track forecast error for the SSDA experiments is reduced by over 40% relative to the control experiments, and by about 30% relative to the GFS forecasts, respectively. In terms of TC intensity, benefiting from higher grid resolution that better represents regional and small-scale processes, both the control and SSDA runs outperform the GFS forecasts. The SSDA runs show approximately 14% less overall mean intensity forecast error than do the control runs. It should be noted that, for the Felix case, the advantage of SSDA becomes more evident for forecasts with a lead time longer than 48 h.


2015 ◽  
Vol 16 (2) ◽  
pp. 811-829 ◽  
Author(s):  
Liao-Fan Lin ◽  
Ardeshir M. Ebtehaj ◽  
Rafael L. Bras ◽  
Alejandro N. Flores ◽  
Jingfeng Wang

Abstract The objective of this study is to develop a framework for dynamically downscaling spaceborne precipitation products using the Weather Research and Forecasting (WRF) Model with four-dimensional variational data assimilation (4D-Var). Numerical experiments have been conducted to 1) understand the sensitivity of precipitation downscaling through point-scale precipitation data assimilation and 2) investigate the impact of seasonality and associated changes in precipitation-generating mechanisms on the quality of spatiotemporal downscaling of precipitation. The point-scale experiment suggests that assimilating precipitation can significantly affect the precipitation analysis, forecast, and downscaling. Because of occasional overestimation or underestimation of small-scale summertime precipitation extremes, the numerical experiments presented here demonstrate that the wintertime assimilation produces downscaled precipitation estimates that are in closer agreement with the reference National Centers for Environmental Prediction stage IV dataset than similar summertime experiments. This study concludes that the WRF 4D-Var system is able to effectively downscale a 6-h precipitation product with a spatial resolution of 20 km to hourly precipitation with a spatial resolution of less than 10 km in grid spacing—relevant to finescale hydrologic applications for the era of the Global Precipitation Measurement mission.


2015 ◽  
Vol 143 (2) ◽  
pp. 433-451 ◽  
Author(s):  
Daryl T. Kleist ◽  
Kayo Ide

Abstract An observing system simulation experiment (OSSE) has been carried out to evaluate the impact of a hybrid ensemble–variational data assimilation algorithm for use with the National Centers for Environmental Prediction (NCEP) global data assimilation system. An OSSE provides a controlled framework for evaluating analysis and forecast errors since a truth is known. In this case, the nature run was generated and provided by the European Centre for Medium-Range Weather Forecasts as part of the international Joint OSSE project. The assimilation and forecast impact studies are carried out using a model that is different than the nature run model, thereby accounting for model error and avoiding issues with the so-called identical-twin experiments. It is found that the quality of analysis is improved substantially when going from three-dimensional variational data assimilation (3DVar) to a hybrid 3D ensemble–variational (EnVar)-based algorithm. This is especially true in terms of the analysis error reduction for wind and moisture, most notably in the tropics. Forecast impact experiments show that the hybrid-initialized forecasts improve upon the 3DVar-based forecasts for most metrics, lead times, variables, and levels. An additional experiment that utilizes 3DEnVar (100% ensemble) demonstrates that the use of a 25% static error covariance contribution does not alter the quality of hybrid analysis when utilizing the tangent-linear normal mode constraint on the total hybrid increment.


2021 ◽  
Vol 13 (11) ◽  
pp. 2103
Author(s):  
Yuchen Liu ◽  
Jia Liu ◽  
Chuanzhe Li ◽  
Fuliang Yu ◽  
Wei Wang

An attempt was made to evaluate the impact of assimilating Doppler Weather Radar (DWR) reflectivity together with Global Telecommunication System (GTS) data in the three-dimensional variational data assimilation (3DVAR) system of the Weather Research Forecast (WRF) model on rain storm prediction in Daqinghe basin of northern China. The aim of this study was to explore the potential effects of data assimilation frequency and to evaluate the outputs from different domain resolutions in improving the meso-scale NWP rainfall products. In this study, four numerical experiments (no assimilation, 1 and 6 h assimilation time interval with DWR and GTS at 1 km horizontal resolution, 6 h assimilation time interval with radar reflectivity, and GTS data at 3 km horizontal resolution) are carried out to evaluate the impact of data assimilation on prediction of convective rain storms. The results show that the assimilation of radar reflectivity and GTS data collectively enhanced the performance of the WRF-3DVAR system over the Beijing-Tianjin-Hebei region of northern China. It is indicated by the experimental results that the rapid update assimilation has a positive impact on the prediction of the location, tendency, and development of rain storms associated with the study area. In order to explore the influence of data assimilation in the outer domain on the output of the inner domain, the rainfall outputs of 3 and 1 km resolution are compared. The results show that the data assimilation in the outer domain has a positive effect on the output of the inner domain. Since the 3DVAR system is able to analyze certain small-scale and convective-scale features through the incorporation of radar observations, hourly assimilation time interval does not always significantly improve precipitation forecasts because of the inaccurate radar reflectivity observations. Therefore, before data assimilation, the validity of assimilation data should be judged as far as possible in advance, which can not only improve the prediction accuracy, but also improve the assimilation efficiency.


2019 ◽  
Vol 148 (1) ◽  
pp. 63-81 ◽  
Author(s):  
Kevin Bachmann ◽  
Christian Keil ◽  
George C. Craig ◽  
Martin Weissmann ◽  
Christian A. Welzbacher

Abstract We investigate the practical predictability limits of deep convection in a state-of-the-art, high-resolution, limited-area ensemble prediction system. A combination of sophisticated predictability measures, namely, believable and decorrelation scale, are applied to determine the predictable scales of short-term forecasts in a hierarchy of model configurations. First, we consider an idealized perfect model setup that includes both small-scale and synoptic-scale perturbations. We find increased predictability in the presence of orography and a strongly beneficial impact of radar data assimilation, which extends the forecast horizon by up to 6 h. Second, we examine realistic COSMO-KENDA simulations, including assimilation of radar and conventional data and a representation of model errors, for a convectively active two-week summer period over Germany. The results confirm increased predictability in orographic regions. We find that both latent heat nudging and ensemble Kalman filter assimilation of radar data lead to increased forecast skill, but the impact is smaller than in the idealized experiments. This highlights the need to assimilate spatially and temporally dense data, but also indicates room for further improvement. Finally, the examination of operational COSMO-DE-EPS ensemble forecasts for three summer periods confirms the beneficial impact of orography in a statistical sense and also reveals increased predictability in weather regimes controlled by synoptic forcing, as defined by the convective adjustment time scale.


2017 ◽  
Vol 10 (3) ◽  
pp. 1383-1402 ◽  
Author(s):  
Paolo Davini ◽  
Jost von Hardenberg ◽  
Susanna Corti ◽  
Hannah M. Christensen ◽  
Stephan Juricke ◽  
...  

Abstract. The Climate SPHINX (Stochastic Physics HIgh resolutioN eXperiments) project is a comprehensive set of ensemble simulations aimed at evaluating the sensitivity of present and future climate to model resolution and stochastic parameterisation. The EC-Earth Earth system model is used to explore the impact of stochastic physics in a large ensemble of 30-year climate integrations at five different atmospheric horizontal resolutions (from 125 up to 16 km). The project includes more than 120 simulations in both a historical scenario (1979–2008) and a climate change projection (2039–2068), together with coupled transient runs (1850–2100). A total of 20.4 million core hours have been used, made available from a single year grant from PRACE (the Partnership for Advanced Computing in Europe), and close to 1.5 PB of output data have been produced on SuperMUC IBM Petascale System at the Leibniz Supercomputing Centre (LRZ) in Garching, Germany. About 140 TB of post-processed data are stored on the CINECA supercomputing centre archives and are freely accessible to the community thanks to an EUDAT data pilot project. This paper presents the technical and scientific set-up of the experiments, including the details on the forcing used for the simulations performed, defining the SPHINX v1.0 protocol. In addition, an overview of preliminary results is given. An improvement in the simulation of Euro-Atlantic atmospheric blocking following resolution increase is observed. It is also shown that including stochastic parameterisation in the low-resolution runs helps to improve some aspects of the tropical climate – specifically the Madden–Julian Oscillation and the tropical rainfall variability. These findings show the importance of representing the impact of small-scale processes on the large-scale climate variability either explicitly (with high-resolution simulations) or stochastically (in low-resolution simulations).


2015 ◽  
Vol 2 (2) ◽  
pp. 513-536 ◽  
Author(s):  
I. Grooms ◽  
Y. Lee

Abstract. Superparameterization (SP) is a multiscale computational approach wherein a large scale atmosphere or ocean model is coupled to an array of simulations of small scale dynamics on periodic domains embedded into the computational grid of the large scale model. SP has been successfully developed in global atmosphere and climate models, and is a promising approach for new applications. The authors develop a 3D-Var variational data assimilation framework for use with SP; the relatively low cost and simplicity of 3D-Var in comparison with ensemble approaches makes it a natural fit for relatively expensive multiscale SP models. To demonstrate the assimilation framework in a simple model, the authors develop a new system of ordinary differential equations similar to the two-scale Lorenz-'96 model. The system has one set of variables denoted {Yi}, with large and small scale parts, and the SP approximation to the system is straightforward. With the new assimilation framework the SP model approximates the large scale dynamics of the true system accurately.


Author(s):  
I. Smyrnov

Rural tourism is now seen as an important direction of development of the regional economy. From the perspective of sustainable development rural tourism affects the economic, social and environmental aspects of the regional and local economy. Rural tourism is closely linked with agrotourism, eco-tourism, natural tourism and so on. Sustainable rural tourism can be realized by applying logistic, geographic and marketing approaches as components of sustainable development strategies. Logistics approach is determined by logistic potential of resource base of rural tourism and appropriate tourist flows regulation. In this context in the article the concept of tourism capacity or capacity of the resource base of rural tourism is used. The problem of the definition of tourism pressure on the resource base of rural tourism, particularly in natural landscapes is disclosed. Unlike environmental and recrealogical sciences, which stop at the capacity definition of the resource base of tourism, tourism logistics compares this figure with the existing tourist flows and accordingly determines the safe way of tourism management to ensure its sustainable nature. It was shown that these strategies boil down to two basic types – the further development of tourism in a particular area or limit such activities to conserve the resource base of tourism. Recreational (travel) load is the indicator that reflects the impact of tourism on the resource base of tourism (especially landscape complex), expressed by the number of tourists or tourists-days per area unit or per tourist site for the certain period of time (day, month, season year). There are actual, allowable (the maximum) and destructive (dangerous) types of travel load. The latter can lead recreational area or resource base of rural tourism to destruction. Thus, depending on the intensity of tourism resource base using in rural tourism it may change – according to tourist consumption. Large number of tourists affects the entire range of recreational destinations and their individual components. The most vulnerable part of the environment in this sense is vegetation, except that significant changes may occur with soil, water bodies, air and so on. The geographic dimension of the problem of rural tourism sustainable development includes the concept of zoning, ie the division of the territory, offering to develop rural tourism in several zones with different modes of travel usage – from a total ban (in protected areas) for complete freedom with transitional stages, involving various limit degrees in the development of rural tourism. Marketing approach reflects the application of the curve R. Butler to the stages of development of rural tourism destinations with the release of such steps as: research, involvement, development, consolidation, stagnation (also called “saturation”), revival or decline. Shown the models that link the stage of resource base tourist development (under “Curve Butler”), strength of tourism consumption the magnitude of such effects (eg weak (disperse) impact in large scale, strong (concentrated) impact in large scale, strong (concentrated) impact in small scale, weak (disperse) impact in small scale), dynamics of tourism development at the territory.


2016 ◽  
Author(s):  
Paolo Davini ◽  
Jost von Hardenberg ◽  
Susanna Corti ◽  
Hannah M. Christensen ◽  
Stephan Juricke ◽  
...  

Abstract. The Climate SPHINX (Stochastic Physics HIgh resolutioN eXperiments) project is a comprehensive set of ensemble simulations aimed at evaluating the sensitivity of present and future climate to model resolution and stochastic parameterisation. The EC-Earth Earth-System Model is used to explore the impact of stochastic physics in a large ensemble of 30-year climate integrations at five different atmospheric horizontal resolutions (from 125 km up to 16 km). The project includes more than 120 simulations in both a historical scenario (1979–2008) and a climate change projection (2039–2068), together with coupled transient runs (1850–2100). A total of 20.4 million core hours have been used, made available from a single year grant from PRACE (the Partnership for Advanced Computing in Europe), and close to 1.5 PBytes of output data have been produced on SuperMUC IBM Petascale System at the Leibniz Supercomputing Center (LRZ) in Garching, Germany. About 140 TBytes of post-processed data are stored on the CINECA supercomputing center archives and are freely accessible to the community thanks to an EUDAT Data Pilot project. This paper presents the technical and scientific setup of the experiments, including the details on the forcing used for the simulations performed, defining the SPHINX v1.0 protocol. In addition, an overview of preliminary results is given: an improvement in the simulation of Euro-Atlantic atmospheric blocking following resolution increases is observed. It is also shown that including stochastic parameterisation in the low resolution runs helps to improve some aspects of the tropical climate – specifically the Madden-Julian Oscillation and the tropical rainfall variability. These findings show the importance of representing the impact of small scale processes on the large scale climate variability either explicitly (with high resolution simulations) or stochastically (in low resolution simulations).


Sign in / Sign up

Export Citation Format

Share Document