scholarly journals An integrated user-friendly ArcMAP tool for bivariate statistical modeling in geoscience applications

2014 ◽  
Vol 7 (5) ◽  
pp. 7239-7265 ◽  
Author(s):  
M. N. Jebur ◽  
B. Pradhan ◽  
H. Z. M. Shafri ◽  
Z. Yusof ◽  
M. S. Tehrany

Abstract. Modeling and classification difficulties are fundamental issues in natural hazard assessment. A geographic information system (GIS) is a domain that requires users to use various tools to perform different types of spatial modeling. Bivariate statistical analysis (BSA) assists in hazard modeling. To perform this analysis, several calculations are required and the user has to transfer data from one format to another. Most researchers perform these calculations manually by using Microsoft Excel or other programs. This process is time consuming and carries a degree of uncertainty. The lack of proper tools to implement BSA in a GIS environment prompted this study. In this paper, a user-friendly tool, BSM (bivariate statistical modeler), for BSA technique is proposed. Three popular BSA techniques such as frequency ratio, weights-of-evidence, and evidential belief function models are applied in the newly proposed ArcMAP tool. This tool is programmed in Python and is created by a simple graphical user interface, which facilitates the improvement of model performance. The proposed tool implements BSA automatically, thus allowing numerous variables to be examined. To validate the capability and accuracy of this program, a pilot test area in Malaysia is selected and all three models are tested by using the proposed program. Area under curve is used to measure the success rate and prediction rate. Results demonstrate that the proposed program executes BSA with reasonable accuracy. The proposed BSA tool can be used in numerous applications, such as natural hazard, mineral potential, hydrological, and other engineering and environmental applications.

2015 ◽  
Vol 8 (3) ◽  
pp. 881-891 ◽  
Author(s):  
M. N. Jebur ◽  
B. Pradhan ◽  
H. Z. M. Shafri ◽  
Z. M. Yusoff ◽  
M. S. Tehrany

Abstract. Modelling and classification difficulties are fundamental issues in natural hazard assessment. A geographic information system (GIS) is a domain that requires users to use various tools to perform different types of spatial modelling. Bivariate statistical analysis (BSA) assists in hazard modelling. To perform this analysis, several calculations are required and the user has to transfer data from one format to another. Most researchers perform these calculations manually by using Microsoft Excel or other programs. This process is time-consuming and carries a degree of uncertainty. The lack of proper tools to implement BSA in a GIS environment prompted this study. In this paper, a user-friendly tool, bivariate statistical modeler (BSM), for BSA technique is proposed. Three popular BSA techniques, such as frequency ratio, weight-of-evidence (WoE), and evidential belief function (EBF) models, are applied in the newly proposed ArcMAP tool. This tool is programmed in Python and created by a simple graphical user interface (GUI), which facilitates the improvement of model performance. The proposed tool implements BSA automatically, thus allowing numerous variables to be examined. To validate the capability and accuracy of this program, a pilot test area in Malaysia is selected and all three models are tested by using the proposed program. Area under curve (AUC) is used to measure the success rate and prediction rate. Results demonstrate that the proposed program executes BSA with reasonable accuracy. The proposed BSA tool can be used in numerous applications, such as natural hazard, mineral potential, hydrological, and other engineering and environmental applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noor Sajid ◽  
Emma Holmes ◽  
Thomas M. Hope ◽  
Zafeirios Fountas ◽  
Cathy J. Price ◽  
...  

AbstractFunctional recovery after brain damage varies widely and depends on many factors, including lesion site and extent. When a neuronal system is damaged, recovery may occur by engaging residual (e.g., perilesional) components. When damage is extensive, recovery depends on the availability of other intact neural structures that can reproduce the same functional output (i.e., degeneracy). A system’s response to damage may occur rapidly, require learning or both. Here, we simulate functional recovery from four different types of lesions, using a generative model of word repetition that comprised a default premorbid system and a less used alternative system. The synthetic lesions (i) completely disengaged the premorbid system, leaving the alternative system intact, (ii) partially damaged both premorbid and alternative systems, and (iii) limited the experience-dependent plasticity of both. The results, across 1000 trials, demonstrate that (i) a complete disconnection of the premorbid system naturally invoked the engagement of the other, (ii) incomplete damage to both systems had a much more devastating long-term effect on model performance and (iii) the effect of reducing learning capacity within each system. These findings contribute to formal frameworks for interpreting the effect of different types of lesions.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4005 ◽  
Author(s):  
Angelats Lobo ◽  
Ginestra

The classic cell culture involves the use of support in two dimensions, such as a well plate or a Petri dish, that allows the culture of different types of cells. However, this technique does not mimic the natural microenvironment where the cells are exposed to. To solve that, three-dimensional bioprinting techniques were implemented, which involves the use of biopolymers and/or synthetic materials and cells. Because of a lack of information between data sources, the objective of this review paper is, to sum up, all the available information on the topic of bioprinting and to help researchers with the problematics with 3D bioprinters, such as the 3D-Bioplotter™. The 3D-Bioplotter™ has been used in the pre-clinical field since 2000 and could allow the printing of more than one material at the same time, and therefore to increase the complexity of the 3D structure manufactured. It is also very precise with maximum flexibility and a user-friendly and stable software that allows the optimization of the bioprinting process on the technological point of view. Different applications have resulted from the research on this field, mainly focused on regenerative medicine, but the lack of information and/or the possible misunderstandings between papers makes the reproducibility of the tests difficult. Nowadays, the 3D Bioprinting is evolving into another technology called 4D Bioprinting, which promises to be the next step in the bioprinting field and might promote great applications in the future.


2015 ◽  
Vol 15 (9) ◽  
pp. 1963-1972 ◽  
Author(s):  
L. Turconi ◽  
D. Tropeano ◽  
G. Savio ◽  
S. K. De ◽  
P. J. Mason

Abstract. The study area (600 km2), consisting of Orco and Soana valleys in the Western Italian Alps, experienced different types of natural hazards, typical of the whole Alpine environment. Some of the authors have been requested to draw a civil protection plan for such mountainous regions. This offered the special opportunity (1) to draw a lot of unpublished historical data, dating back several centuries mostly concerning natural hazard processes and related damages, (2) to develop original detailed geo-morphological studies in a region still poorly known, (3) to prepare detailed thematic maps illustrating landscape components related to natural conditions and hazards, (4) to thoroughly check present-day situations in the area compared to the effects of past events and (5) to find adequate natural hazard scenarios for all sites exposed to risk. The method of work has been essentially to compare archival findings with field evidence in order to assess natural hazard processes, their occurrence and magnitude, and to arrange all such elements in a database for GIS-supported thematic maps. Several types of natural hazards, such as landslides, rockfalls, debris flows, stream floods and snow avalanches cause huge damage to lives and properties (housings, roads, tourist sites). We aim to obtain newly acquired knowledge in this large, still poorly understood area as well as develop easy-to-interpret products such as natural risk maps.


2021 ◽  
Author(s):  
Pengcheng Jiang

<i>Abstract</i>— One of the most prevalent diseases, skin cancer, has been proven to be treatable at an early stage. Thus, techniques that allow individuals to identify skin cancer symptoms early are in great demand. This paper proposed an interactive skin lesion diagnosis system based on the ensemble of multiple sophisticated CNN models for image classification. The performance of ResNet50, ResNeXt50, ResNeXt101, EfficientNetB4, Mobile-NetV2, MobileNetV3, and MnasNet are investigated separately as ensemble components. Then, using various criteria, we constructed ensembles and compared the accuracy they achieved. Moreover, we designed a method to update the ensemble for new data and examined its performance. In addition, a few natural language processing (NLP) techniques were used to make our system more user-friendly. To integrate all the functionalities, we built a user interface with PyQt5. As a result, MobileNetV3 achieved 91.02% as the best accuracy among all single models; ensemble weighted by cubic precision achieved 92.84% accuracy as the highest one in this study; a notable improvement in accuracy demonstrated the effectiveness of the model updating approach, and a system with all of the desired features was successfully developed. These findings benefit in two aspects. For model performance, applying cubic precisions can increase ensemble learning classification accuracy. For the developed diagnosis system, it can aid in the


2019 ◽  
Vol 967 ◽  
pp. 221-227 ◽  
Author(s):  
Adeyemi Adesina

Different initiatives have evolved over the years to improve the durability of concrete, and one of the promising areas gaining attention in recent years is the use of nanomaterials in concrete. Though most of the applications of nanomaterials to improve the properties of concrete has been restricted to laboratory applications, it is anticipated that in few years to come more commercial and large-scale applications will ensue. This overview explored different types of nanomaterials already used in concrete and their effects on the durability of concrete. It was found out that nanosilica is the most used nanomaterial in concrete. And all types of nanomaterials currently used, enhance the durability of concrete significantly compared to other methods employed before the advent of nanomaterials in concrete. However, the use of other nanomaterials such as nanotitania and nanoalumina is attracting great attention. But the use of nanomaterials in concrete is faced by several challenges such as its high cost, production process, toxicity, etc. It is expected that with more research and application in the use of nanomaterials to enhance the properties of concrete, cheap and user-friendly nanomaterials can be developed. In addition, this review shows the possibility of enhancing the current durability properties with the use of nanomaterials.


2020 ◽  
Vol 15 (No. 4) ◽  
pp. 246-257
Author(s):  
Jiří Brychta ◽  
Martina Brychtová

The effect of the morphology is key aspect of erosion modelling. In Universal Soil Loss Equation (USLE) type methods, this effect is expressed by the topographic factor (LS). The LS calculation in GIS is performed by a unit contributing area (UCA) method and can mainly be influenced by the pixel resolution, by the flow direction algorithm and by the inclusion of a hydrologically closed unit (HCU) principle, the cutoff slope angle (CSA) principle and the ephemeral gullies extraction (EG) principle. This research presents a new LS-RUSLE tool created with the inclusion of these principles in the automatic user-friendly GIS tool. The HCU principle using a specific surface runoff interruption algorithm, based on pixels with NoData values at the interruption points (pixels), appears to be key. With this procedure, the occurrence of overestimation results by flow conversion was rapidly reduced. Additionally, the reduction of extreme L and LS values calculated in the GIS environment was reached by the application of the CSA and EG principles. The results of the LS-RUSLE model show the prospective use of this tool in practice.


2017 ◽  
Vol 20 (3) ◽  
pp. 257-259 ◽  
Author(s):  
Julian Hecker ◽  
Anna Maaser ◽  
Dmitry Prokopenko ◽  
Heide Loehlein Fier ◽  
Christoph Lange

VEGAS (versatile gene-based association study) is a popular methodological framework to perform gene-based tests based on summary statistics from single-variant analyses. The approach incorporates linkage disequilibrium information from reference panels to account for the correlation of test statistics. The gene-based test can utilize three different types of tests. In 2015, the improved framework VEGAS2, using more detailed reference panels, was published. Both versions provide user-friendly web- and offline-based tools for the analysis. However, the implementation of the popular top-percentage test is erroneous in both versions. The p values provided by VEGAS2 are deflated/anti-conservative. Based on real data examples, we demonstrate that this can increase substantially the rate of false-positive findings and can lead to inconsistencies between different test options. We also provide code that allows the user of VEGAS to compute correct p values.


Author(s):  
A. Al-jaberi

Transport is a link between territories with different types of land use in urban areas. At the same time, the improved accessibility associated with the transport network can lead to increased segregation and a change in land use. The article analyzes the road network of the Najaf and Kufa cities, Najaf province, Iraq, in order to identify the spatial classification of roads and streets. Based on the analysis, three main types of roads and streets are identified with respect to their structural features and characteristics: regional, city and district. The dependence of the typology and location of transit-oriented zones on the classification of the road network is indicated. In the process of analyzing the study area, the most optimal points for the practice of transit-oriented development (TOD) are identified, the territories most favorable for the location of transit-oriented zones of regional, city and district significance are introduced, the main characteristics of these zones are given. In order to reach goals, this article includes the collection of data and the creation of a database for land use applying a geographic information systems (GIS) environment. The result of the spatial analysis are five regional nodes, six urban nodes and seven district nodes


Sign in / Sign up

Export Citation Format

Share Document