scholarly journals On the use of Schwarz–Christoffel conformal mappings to the grid generation for global ocean models

2015 ◽  
Vol 8 (2) ◽  
pp. 1337-1373
Author(s):  
S. Xu ◽  
B. Wang ◽  
J. Liu

Abstract. In this article we propose two conformal mapping based grid generation algorithms for global ocean general circulation models (OGCMs). Contrary to conventional, analytical forms based dipolar or tripolar grids, the new algorithms are based on Schwarz–Christoffel (SC) conformal mapping with prescribed boundary information. While dealing with the basic grid design problem of pole relocation, these new algorithms also address more advanced issues such as smoothed scaling factor, or the new requirements on OGCM grids arisen from the recent trend of high-resolution and multi-scale modeling. The proposed grid generation algorithm could potentially achieve the alignment of grid lines to coastlines, enhanced spatial resolution in coastal regions, and easier computational load balance. Since the generated grids are still orthogonal curvilinear, they can be readily utilized in existing Bryan–Cox–Semtner type ocean models. The proposed methodology can also be applied to the grid generation task for regional ocean modeling where complex land–ocean distribution is present.

2015 ◽  
Vol 8 (10) ◽  
pp. 3471-3485 ◽  
Author(s):  
S. Xu ◽  
B. Wang ◽  
J. Liu

Abstract. In this article we propose two grid generation methods for global ocean general circulation models. Contrary to conventional dipolar or tripolar grids, the proposed methods are based on Schwarz–Christoffel conformal mappings that map areas with user-prescribed, irregular boundaries to those with regular boundaries (i.e., disks, slits, etc.). The first method aims at improving existing dipolar grids. Compared with existing grids, the sample grid achieves a better trade-off between the enlargement of the latitudinal–longitudinal portion and the overall smooth grid cell size transition. The second method addresses more modern and advanced grid design requirements arising from high-resolution and multi-scale ocean modeling. The generated grids could potentially achieve the alignment of grid lines to the large-scale coastlines, enhanced spatial resolution in coastal regions, and easier computational load balance. Since the grids are orthogonal curvilinear, they can be easily utilized by the majority of ocean general circulation models that are based on finite difference and require grid orthogonality. The proposed grid generation algorithms can also be applied to the grid generation for regional ocean modeling where complex land–sea distribution is present.


2021 ◽  
Author(s):  
Ryan Holmes ◽  
Jan Zika ◽  
Stephen Griffies ◽  
Andrew Hogg ◽  
Andrew Kiss ◽  
...  

<p>Numerical mixing, the physically spurious diffusion of tracers due to the numerical discretization of advection, is known to contribute to biases in ocean circulation models. However, quantifying numerical mixing is non-trivial, with most studies utilizing specifically targeted experiments in idealized settings. Here, we present a precise method based on water-mass transformation for quantifying numerical mixing, including its spatial structure, that can be applied to any conserved variable in global general circulation ocean models. The method is applied to a suite of global MOM5 ocean-sea ice model simulations with differing grid spacings and sub-grid scale parameterizations. In all configurations numerical mixing drives across-isotherm heat transport of comparable magnitude to that associated with explicitly-parameterized mixing. Numerical mixing is prominent at warm temperatures in the tropical thermocline, where it is sensitive to the vertical diffusivity and resolution. At colder temperatures, numerical mixing is sensitive to the presence of explicit neutral diffusion, suggesting that much of the numerical mixing in these regions acts as a proxy for neutral diffusion when it is explicitly absent. Comparison of equivalent (with respect to vertical resolution and explicit mixing parameters) 1/4-degree and 1/10-degree horizontal resolution configurations shows only a modest enhancement in numerical mixing at the eddy-permitting 1/4-degree resolution. Our results provide a detailed view of numerical mixing in ocean models and pave the way for future improvements in numerical methods.</p>


2021 ◽  
Author(s):  
Peter Nooteboom ◽  
Michiel Baatsen ◽  
Peter Bijl ◽  
Erik van Sebille ◽  
Appy Sluijs ◽  
...  

<p>Simulations of the geological past using General Circulation Models (GCMs) are computationally expensive. Mainly because of the long equilibration time scales, most of these GCMs have ocean components with a horizontal resolution of 1° or coarser. Such models are non-eddying and the effects of mesoscale ocean eddies on the transport of heat and salt are parameterized. However, from present-day ocean modeling studies, it is known that eddying ocean models better represent regional and time-mean ocean flows compared to non-eddying models. At the same time, proxy data from sediment sample sites represent climate at specific locations. Hence, the coarse ocean resolution of typical palaeo-GCMs lead to a challenge for model-data comparison in past climates.</p><p>Here we present the first simulations of a global eddying Eocene ocean with a 0.1° (horizontal) resolution model, which are initialized and forced with data from a coarser resolution (1° horizontally) equilibrated coupled ocean-atmosphere GCM. We investigate the response of the model equilibrium state to the change in ocean resolution and the consequences this has for model-data comparison in the middle-late Eocene (38Ma). We find that, compared to the non-eddying model, the eddying ocean resolution of palaeomodels reduce the biases in both sea surface temperatures and biogeographic patterns which are derived from proxy data.</p>


2005 ◽  
Vol 35 (7) ◽  
pp. 1206-1222 ◽  
Author(s):  
Yann Friocourt ◽  
Sybren Drijfhout ◽  
Bruno Blanke ◽  
Sabrina Speich

Abstract The northward export of intermediate water from Drake Passage is investigated in two global ocean general circulation models (GCMs) by means of quantitative particle tracing diagnostics. This study shows that a total of about 23 Sv (Sv ≡ 106 m3 s−1) is exported from Drake Passage to the equator. The Atlantic and Pacific Oceans are the main catchment basins with 7 and 15 Sv, respectively. Only 1–2 Sv of the water exported to the Atlantic equator follow the direct cold route from Drake Passage without entering the Indian Ocean. The remainder loops first into the Indian Ocean subtropical gyre and flows eventually into the Atlantic Ocean by Agulhas leakage. The authors assess the robustness of a theory that relates the export from Drake Passage to the equator to the wind stress over the Southern Ocean. Our GCM results are in reasonable agreement with the theory that predicts the total export. However, the theory cannot be applied to individual basins because of interocean exchanges through the “supergyre” mechanism and other nonlinear processes such as the Agulhas rings. The export of water from Drake Passage starts mainly as an Ekman flow just northward of the latitude band of the Antarctic Circumpolar Current south of South America. Waters quickly subduct and are transferred to the ocean interior as they travel equatorward. They flow along the eastern boundaries in the Sverdrup interior and cross the southern basins northwestward to reach the equator within the western boundary current systems.


2012 ◽  
Vol 9 (5) ◽  
pp. 1797-1807 ◽  
Author(s):  
O. Duteil ◽  
W. Koeve ◽  
A. Oschlies ◽  
O. Aumont ◽  
D. Bianchi ◽  
...  

Abstract. Phosphate distributions simulated by seven state-of-the-art biogeochemical ocean circulation models are evaluated against observations of global ocean nutrient distributions. The biogeochemical models exhibit different structural complexities, ranging from simple nutrient-restoring to multi-nutrient NPZD type models. We evaluate the simulations using the observed volume distribution of phosphate. The errors in these simulated volume class distributions are significantly larger when preformed phosphate (or regenerated phosphate) rather than total phosphate is considered. Our analysis reveals that models can achieve similarly good fits to observed total phosphate distributions for a~very different partitioning into preformed and regenerated nutrient components. This has implications for the strength and potential climate sensitivity of the simulated biological carbon pump. We suggest complementing the use of total nutrient distributions for assessing model skill by an evaluation of the respective preformed and regenerated nutrient components.


2016 ◽  
Author(s):  
D. Ackerley ◽  
D. Dommenget

Abstract. General circulation models (GCMs) are valuable tools for understanding how the global ocean-atmosphere-land surface system interacts and are routinely evaluated relative to observational datasets. Conversely, observational datasets can also be used to constrain GCMs in order to identify systematic errors in their simulated climates. One such example is to prescribe sea surface temperatures (SSTs) such that 70% of the Earth’s surface temperature field is observationally constrained (known as an Atmospheric Model Intercomparison Project, AMIP, simulation). Nevertheless, in such simulations, land surface temperatures are typically allowed to vary freely and therefore any errors that develop over the land may affect the global circulation. In this study therefore, a method for prescribing the land surface temperatures within a GCM (the Australian Community Climate and Earth System Simulator, ACCESS) is presented. Simulations with this prescribed land temperature model produce a mean climate state that is comparable to a simulation with freely varying land temperatures; for example the diurnal cycle of tropical convection is maintained. The model is then developed further to incorporate a selection of "proof of concept" sensitivity experiments where the land surface temperatures are changed globally and regionally. The resulting changes to the global circulation in these sensitivity experiments are found to be consistent with other idealised model experiments described in the wider scientific literature. Finally, a list of other potential applications are described at the end of the study to highlight the usefulness of such a model to the scientific community.


2007 ◽  
Vol 135 (6) ◽  
pp. 2242-2264 ◽  
Author(s):  
Chaojiao Sun ◽  
Michele M. Rienecker ◽  
Anthony Rosati ◽  
Matthew Harrison ◽  
Andrew Wittenberg ◽  
...  

Abstract Two global ocean analyses from 1993 to 2001 have been generated by the Global Modeling and Assimilation Office (GMAO) and Geophysical Fluid Dynamics Laboratory (GFDL), as part of the Ocean Data Assimilation for Seasonal-to-Interannual Prediction (ODASI) consortium efforts. The ocean general circulation models (OGCM) and assimilation methods in the analyses are different, but the forcing and observations are the same as designed for ODASI experiments. Global expendable bathythermograph and Tropical Atmosphere Ocean (TAO) temperature profile observations are assimilated. The GMAO analysis also assimilates synthetic salinity profiles based on climatological T–S relationships from observations (denoted “TS scheme”). The quality of the two ocean analyses in the tropical Pacific is examined here. Questions such as the following are addressed: How do different assimilation methods impact the analyses, including ancillary fields such as salinity and currents? Is there a significant difference in interpretation of the variability from different analyses? How does the treatment of salinity impact the analyses? Both GMAO and GFDL analyses reproduce the time mean and variability of the temperature field compared with assimilated TAO temperature data, taking into account the natural variability and representation errors of the assimilated temperature observations. Surface zonal currents at 15 m from the two analyses generally agree with observed climatology. Zonal current profiles from the analyses capture the intensity and variability of the Equatorial Undercurrent (EUC) displayed in the independent acoustic Doppler current profiler data at three TAO moorings across the equatorial Pacific basin. Compared with independent data from TAO servicing cruises, the results show that 1) temperature errors are reduced below the thermocline in both analyses; 2) salinity errors are considerably reduced below the thermocline in the GMAO analysis; and 3) errors in zonal currents from both analyses are comparable. To discern the impact of the forcing and salinity treatment, a sensitivity study is undertaken with the GMAO assimilation system. Additional analyses are produced with a different forcing dataset, and another scheme to modify the salinity field is tested. This second scheme updates salinity at the time of temperature assimilation based on model T–S relationships (denoted “T scheme”). The results show that both assimilated field (i.e., temperature) and fields that are not directly observed (i.e., salinity and currents) are impacted. Forcing appears to have more impact near the surface (above the core of the EUC), while the salinity treatment is more important below the surface that is directly influenced by forcing. Overall, the TS scheme is more effective than the T scheme in correcting model bias in salinity and improving the current structure. Zonal currents from the GMAO control run where no data are assimilated are as good as the best analysis.


2013 ◽  
Vol 10 (3) ◽  
pp. 1983-2000 ◽  
Author(s):  
R. Wanninkhof ◽  
G. -H. Park ◽  
T. Takahashi ◽  
C. Sweeney ◽  
R. Feely ◽  
...  

Abstract. The globally integrated sea–air anthropogenic carbon dioxide (CO2) flux from 1990 to 2009 is determined from models and data-based approaches as part of the Regional Carbon Cycle Assessment and Processes (RECCAP) project. Numerical methods include ocean inverse models, atmospheric inverse models, and ocean general circulation models with parameterized biogeochemistry (OBGCMs). The median value of different approaches shows good agreement in average uptake. The best estimate of anthropogenic CO2 uptake for the time period based on a compilation of approaches is −2.0 Pg C yr−1. The interannual variability in the sea–air flux is largely driven by large-scale climate re-organizations and is estimated at 0.2 Pg C yr−1 for the two decades with some systematic differences between approaches. The largest differences between approaches are seen in the decadal trends. The trends range from −0.13 (Pg C yr−1) decade−1 to −0.50 (Pg C yr−1) decade−1 for the two decades under investigation. The OBGCMs and the data-based sea–air CO2 flux estimates show appreciably smaller decadal trends than estimates based on changes in carbon inventory suggesting that methods capable of resolving shorter timescales are showing a slowing of the rate of ocean CO2 uptake. RECCAP model outputs for five decades show similar differences in trends between approaches.


Sign in / Sign up

Export Citation Format

Share Document