scholarly journals Satellite-based energy balance model to estimate seasonal evapotranspiration for irrigated sorghum: a case study from the Gezira scheme, Sudan

2008 ◽  
Vol 12 (4) ◽  
pp. 1129-1139 ◽  
Author(s):  
M. A. Bashir ◽  
T. Hata ◽  
H. Tanakamaru ◽  
A. W. Abdelhadi ◽  
A. Tada

Abstract. The availability of the actual water use from agricultural crops is considered as the key factor for irrigation water management, water resources planning, and water allocation. Traditionally, evapotranspiration (ET) has been calculated in the Gezira scheme as the point of reference with evapotranspiration (ETo) and crop coefficients (kc) being derived from actual measurements of soil-water balance. Recently developed, advanced energy balance models assisted in estimating the ET through the remotely sensed data. In this study Enhanced Thematic Mapper Plus (ETM+) and MODerate Resolution Imaging Spectroradiometer (MODIS) images were used to estimate the spatial distribution of the daily, monthly and seasonal ET for irrigated sorghum in the Gezira scheme, Sudan. The daily ET maps were also used to estimate kc over time and space. Results of the energy balance, based on being remotely sensed, were compared to actual measurements conducted during 2004/05 season. The seasonal actual ET values, obtained from the seven MODIS images for irrigated sorghum, were estimated at 579 mm. The values for remotely sensed kc, derived during the initial mid-season and late-season crop development stages, were 0.62, 0.85, 1.15, and 0.48, respectively. On the other hand, the values for the experimental kc during the pervious mention stages were 0.55, 0.94, 1.21 and 0.65, respectively. The estimated seasonal ET of the sorghum, derived by remotely sensed kc, was 674 mm. The Landsat data and the Free MODIS provided reliable, exhaustive, and consistent information on the water use, relevant for decision support in the Gezira scheme.

2006 ◽  
Vol 3 (3) ◽  
pp. 793-817
Author(s):  
M. A. Bashir ◽  
T. Hata ◽  
A. W. Abdelhadi ◽  
H. Tanakamaru ◽  
A. Tada

Abstract. The availability of the actual water use from agricultural crops is considered as the key factor for irrigation water management, water resources planning, and water allocation. Traditionally, evapotranspiration (ET) has been estimated in the Gezira scheme by multiplying the reference evapotranspiration (ETo) by crop coefficient (kc) which is derived from the phenomenological crop stages. Recently, advanced developed energy balance models assist to estimate ET through remotely sensed data. In this study Enhanced Thematic Mapper Plus (ETM+) images were used to estimate spatial distribution of daily, monthly and seasonal ET for irrigated sorghum in the Gezira scheme, Sudan. The daily ET maps were also used to estimate kc over time and space. Results of remotely sensed based energy balance were compared with actual measurements conducted during 2004/05 season. The daily actual ET values estimated using the energy balance model during the satellite acquisition dates (28 July, 29 August, 16 October and 17 November) were 4.7, 5.5, 7.1 and 2.7 mm/day, while the average seasonal evapotranspiration for irrigated sorghum estimated to be around 596 mm. The remotely estimated kc values in the initial, crop development, mid-season and late-season stages were 0.62, 0.85, 1.15, and 0.48 respectively. On the other hand the widely used tradition kc values during the pervious mention stages are 0.55, 0.94, 1.21 and 0.65, respectively. This research shows that remotely sensed measurements can help objectively analyzed the irrigation water requirement for different field crops on daily and seasonal time step. Moreover, the remotely sensed real-time data availability provides the system managers with information that not previously available.


2008 ◽  
Author(s):  
Claudia Coronel ◽  
Edgar Rosales ◽  
Franz Mora ◽  
Alejandra A. López-Caloca ◽  
Felipe-Omar Tapia-Silva ◽  
...  

2011 ◽  
Vol 42 (5) ◽  
pp. 338-355 ◽  
Author(s):  
Luis Samaniego ◽  
Rohini Kumar ◽  
Conrad Jackisch

The goal of this study was to assess the feasibility of using Tropical Rainfall Measuring Mission (TRMM) and Moderate Resolution Imaging Spectroradiometer (MODIS) products to drive a mesoscale hydrologic model (mHM) in a poorly gauged basin. Other remotely sensed products such as LandSat and Shuttle Radar Topography Mission (SRTM) were also used to complement the local geoinformation. For this purpose, three data blending techniques that combine satellite with in situ observations were implemented and evaluated in the Mod basin (512 km2) in India. The climate of the basin is semi-arid and monsoon-dominated. The rainfall gauging network comprised six stations with daily records spanning 9 years. Daily discharge time series was only 4 years long and incomplete. Lumped and distributed versions of mHM were evaluated. Parameters of the lumped version were obtained through calibration. A multiscale regionalization technique was used to parameterize the distributed version using global parameters from other gauged basins. Both mHM versions were evaluated during six monsoon seasons. Results of numerical experiments indicated that driving mHM with satellite-based products is possible and promising. The distributed model with regionalized parameters was at least 20% more efficient than that of its lumped version. Initialization conditions must be carefully considered when the model is only driven by remotely sensed inputs.


2021 ◽  
Author(s):  
Pamela Nagler ◽  
Armando Barreto-Muñoz ◽  
Sattar Chavoshi Borujeni ◽  
Hamideh Nouri ◽  
Christopher Jarchow ◽  
...  

<p>We studied the health and water use of seven riparian reaches of the Lower Colorado River from Hoover to Morelos Dam over the last 20-years, since 2000, to evaluate trends in the riparian ecosystem. This ecosystem has been in decline based on myriad pressures related to drought, water diversions and land use changes, such as defoliation events from the tamarisk leaf beetle, Diorhabda spp. We provide remotely sensed measurements of vegetation index (VI), daily evapotranspiration (ET, mmd<sup>-1</sup>) and annualized ET (mmyr<sup>-1</sup>). We used 250m Moderate Resolution Imaging Spectroradiometer (MODIS) and 30m Landsat EVI2 time-series. We selected EVI2 to parameterize our ET algorithm and tested the ET relationship between sensors by regression approaches and found a significant correlation between EVI2<sub>Landsat</sub> and EVI2<sub>MODIS</sub>. A key finding is that riparian health and its water use between Hoover and Morelos Dams has been in decline since 2000, as measured by Landsat with daily water use dropping from 4.79 mmd<sup>-1 </sup>to 3.18 mmd<sup>-1</sup>. Our results show that over the past two decades, the average greenness (EVI2<sub>Landsat</sub>) loss was 29% and total annual ET loss was 34% (-1.61 mmd<sup>-1 </sup>or -386 mmyr<sup>-1</sup>; a drop from 1163 mmyr<sup>-1 </sup>down to 777 mmyr<sup>-1</sup>). Greenness declined on average 29%, but certain reaches declined 42% or ca. -2.28 mmd<sup>-1</sup>, or -575 mmyr<sup>-1</sup> (Reach 6). Reach 3 showed an ET loss of 39% (-1.94 mmd<sup>-1</sup>, -410 mmyr<sup>-1</sup>). Our findings are significant because riparian plant species have declined so drastically, suggesting further deterioration of biodiversity, wildlife habitat and other key ecosystem services.    </p>


2019 ◽  
Vol 11 (9) ◽  
pp. 1004 ◽  
Author(s):  
Liu ◽  
Zhang ◽  
Xie ◽  
Liu ◽  
Song ◽  
...  

The fraction of absorbed photosynthetically active radiation by vegetation (FAPAR) is a key variable in describing the light absorption ability of the vegetation canopy. Most global FAPAR products, such as MCD15A2H and GEOV1, correspond to FAPAR under black-sky conditions at the satellite overpass time only. In this paper, we aim to produce both the global white-sky and black-sky FAPAR products based on the moderate resolution imaging spectroradiometer (MODIS) visible (VIS) albedo, leaf area index (LAI), and clumping index (CI) products. Firstly, a non-linear spectral mixture model (NSM) was designed to retrieve the soil visible (VIS) albedo. The global soil VIS albedo and its dynamics were successfully mapped at a resolution of 500 m using the MCD43A3 VIS albedo product and the MCD15A2H LAI product. Secondly, a method based on the energy balance residual (EBR) principle was presented to retrieve the white-sky and black-sky FAPAR using the MODIS broadband VIS albedo (white-sky and black-sky) product (MCD43A3), the LAI product (MCD15A2H) and CI products. Finally, the two EBR FAPAR products were compared with the MCD15A2H and Geoland2/BioPar version 1 (GEOV1) black-sky FAPAR products. A comparison of the results indicates that these FAPAR products show similar spatial and seasonal patterns. Direct validation using FAPAR observations from the Validation of Land European Remote sensing Instrument (VALERI) project demonstrates that the EBR black-sky FAPAR product was more accurate and had a lower bias (R2 = 0.917, RMSE = 0.088, and bias = −2.8 %) than MCD15A2H (R2 = 0.901, RMSE = 0.096, and bias = 7.6 % ) and GEOV1 (R2 = 0.868, RMSE = 0.105, and bias = 6.1%).


2018 ◽  
Vol 61 (2) ◽  
pp. 533-548 ◽  
Author(s):  
J. Burdette Barker ◽  
Christopher M. U. Neale ◽  
Derek M. Heeren ◽  
Andrew E. Suyker

Abstract. Accurate generation of spatial soil water maps is useful for many types of irrigation management. A hybrid remote sensing evapotranspiration (ET) model combining reflectance-based basal crop coefficients (Kcbrf) and a two-source energy balance (TSEB) model was modified and validated for use in real-time irrigation management. We modeled spatial ET for maize and soybean fields in eastern Nebraska for the 2011-2013 growing seasons. We used Landsat 5, 7, and 8 imagery as remote sensing inputs. In the TSEB, we used the Priestly-Taylor (PT) approximation for canopy latent heat flux, as in the original model formulations. We also used the Penman-Monteith (PM) approximation for comparison. We compared energy balance fluxes and computed ET with measurements from three eddy covariance systems within the study area. Net radiation was underestimated by the model when data from a local weather station were used as input, with mean bias error (MBE) of -33.8 to -40.9 W m-2. The measured incident solar radiation appeared to be biased low. The net radiation model performed more satisfactorily when data from the eddy covariance flux towers were input into the model, with MBE of 5.3 to 11.2 W m-2. We removed bias in the daily energy balance ET using a dimensionless multiplier that ranged from 0.89 to 0.99. The bias-corrected TSEB ET, using weather data from a local weather station and with local ground data in thermal infrared imagery corrections, had MBE = 0.09 mm d-1 (RMSE = 1.49 mm d-1) for PM and MBE = 0.04 mm d-1 (RMSE = 1.18 mm d-1) for PT. The hybrid model used statistical interpolation to combine the two ET estimates. We computed weighting factors for statistical interpolation to be 0.37 to 0.50 for the PM method and 0.56 to 0.64 for the PT method. Provisions were added to the model, including a real-time crop coefficient methodology, which allowed seasonal crop coefficients to be computed with relatively few remote sensing images. This methodology performed well when compared to basal crop coefficients computed using a full season of input imagery. Water balance ET compared favorably with the eddy covariance data after incorporating the TSEB ET. For a validation dataset, the magnitude of MBE decreased from -0.86 mm d-1 (RMSE = 1.37 mm d-1) for the Kcbrf alone to -0.45 mm d-1 (RMSE = 0.98 mm d-1) and -0.39 mm d-1 (RMSE = 0.95 mm d-1) with incorporation of the TSEB ET using the PM and PT methods, respectively. However, the magnitudes of MBE and RMSE were increased for a running average of daily computations in the full May-October periods. The hybrid model did not necessarily result in improved model performance. However, the water balance model is adaptable for real-time irrigation scheduling and may be combined with forecasted reference ET, although the low temporal frequency of satellite imagery is expected to be a challenge in real-time irrigation management. Keywords: Center-pivot irrigation, ET estimation methods, Evapotranspiration, Irrigation scheduling, Irrigation water balance, Model validation, Variable-rate irrigation.


2018 ◽  
Vol 204 ◽  
pp. 412-423 ◽  
Author(s):  
B. Zhong ◽  
A. Yang ◽  
S. Wu ◽  
J. Li ◽  
S. Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document