scholarly journals Satellite-based evapotranspiration and crop coefficient for irrigated sorghum in the Gezira scheme, Sudan

2006 ◽  
Vol 3 (3) ◽  
pp. 793-817
Author(s):  
M. A. Bashir ◽  
T. Hata ◽  
A. W. Abdelhadi ◽  
H. Tanakamaru ◽  
A. Tada

Abstract. The availability of the actual water use from agricultural crops is considered as the key factor for irrigation water management, water resources planning, and water allocation. Traditionally, evapotranspiration (ET) has been estimated in the Gezira scheme by multiplying the reference evapotranspiration (ETo) by crop coefficient (kc) which is derived from the phenomenological crop stages. Recently, advanced developed energy balance models assist to estimate ET through remotely sensed data. In this study Enhanced Thematic Mapper Plus (ETM+) images were used to estimate spatial distribution of daily, monthly and seasonal ET for irrigated sorghum in the Gezira scheme, Sudan. The daily ET maps were also used to estimate kc over time and space. Results of remotely sensed based energy balance were compared with actual measurements conducted during 2004/05 season. The daily actual ET values estimated using the energy balance model during the satellite acquisition dates (28 July, 29 August, 16 October and 17 November) were 4.7, 5.5, 7.1 and 2.7 mm/day, while the average seasonal evapotranspiration for irrigated sorghum estimated to be around 596 mm. The remotely estimated kc values in the initial, crop development, mid-season and late-season stages were 0.62, 0.85, 1.15, and 0.48 respectively. On the other hand the widely used tradition kc values during the pervious mention stages are 0.55, 0.94, 1.21 and 0.65, respectively. This research shows that remotely sensed measurements can help objectively analyzed the irrigation water requirement for different field crops on daily and seasonal time step. Moreover, the remotely sensed real-time data availability provides the system managers with information that not previously available.

2008 ◽  
Vol 12 (4) ◽  
pp. 1129-1139 ◽  
Author(s):  
M. A. Bashir ◽  
T. Hata ◽  
H. Tanakamaru ◽  
A. W. Abdelhadi ◽  
A. Tada

Abstract. The availability of the actual water use from agricultural crops is considered as the key factor for irrigation water management, water resources planning, and water allocation. Traditionally, evapotranspiration (ET) has been calculated in the Gezira scheme as the point of reference with evapotranspiration (ETo) and crop coefficients (kc) being derived from actual measurements of soil-water balance. Recently developed, advanced energy balance models assisted in estimating the ET through the remotely sensed data. In this study Enhanced Thematic Mapper Plus (ETM+) and MODerate Resolution Imaging Spectroradiometer (MODIS) images were used to estimate the spatial distribution of the daily, monthly and seasonal ET for irrigated sorghum in the Gezira scheme, Sudan. The daily ET maps were also used to estimate kc over time and space. Results of the energy balance, based on being remotely sensed, were compared to actual measurements conducted during 2004/05 season. The seasonal actual ET values, obtained from the seven MODIS images for irrigated sorghum, were estimated at 579 mm. The values for remotely sensed kc, derived during the initial mid-season and late-season crop development stages, were 0.62, 0.85, 1.15, and 0.48, respectively. On the other hand, the values for the experimental kc during the pervious mention stages were 0.55, 0.94, 1.21 and 0.65, respectively. The estimated seasonal ET of the sorghum, derived by remotely sensed kc, was 674 mm. The Landsat data and the Free MODIS provided reliable, exhaustive, and consistent information on the water use, relevant for decision support in the Gezira scheme.


2008 ◽  
Author(s):  
Claudia Coronel ◽  
Edgar Rosales ◽  
Franz Mora ◽  
Alejandra A. López-Caloca ◽  
Felipe-Omar Tapia-Silva ◽  
...  

2018 ◽  
Vol 61 (2) ◽  
pp. 533-548 ◽  
Author(s):  
J. Burdette Barker ◽  
Christopher M. U. Neale ◽  
Derek M. Heeren ◽  
Andrew E. Suyker

Abstract. Accurate generation of spatial soil water maps is useful for many types of irrigation management. A hybrid remote sensing evapotranspiration (ET) model combining reflectance-based basal crop coefficients (Kcbrf) and a two-source energy balance (TSEB) model was modified and validated for use in real-time irrigation management. We modeled spatial ET for maize and soybean fields in eastern Nebraska for the 2011-2013 growing seasons. We used Landsat 5, 7, and 8 imagery as remote sensing inputs. In the TSEB, we used the Priestly-Taylor (PT) approximation for canopy latent heat flux, as in the original model formulations. We also used the Penman-Monteith (PM) approximation for comparison. We compared energy balance fluxes and computed ET with measurements from three eddy covariance systems within the study area. Net radiation was underestimated by the model when data from a local weather station were used as input, with mean bias error (MBE) of -33.8 to -40.9 W m-2. The measured incident solar radiation appeared to be biased low. The net radiation model performed more satisfactorily when data from the eddy covariance flux towers were input into the model, with MBE of 5.3 to 11.2 W m-2. We removed bias in the daily energy balance ET using a dimensionless multiplier that ranged from 0.89 to 0.99. The bias-corrected TSEB ET, using weather data from a local weather station and with local ground data in thermal infrared imagery corrections, had MBE = 0.09 mm d-1 (RMSE = 1.49 mm d-1) for PM and MBE = 0.04 mm d-1 (RMSE = 1.18 mm d-1) for PT. The hybrid model used statistical interpolation to combine the two ET estimates. We computed weighting factors for statistical interpolation to be 0.37 to 0.50 for the PM method and 0.56 to 0.64 for the PT method. Provisions were added to the model, including a real-time crop coefficient methodology, which allowed seasonal crop coefficients to be computed with relatively few remote sensing images. This methodology performed well when compared to basal crop coefficients computed using a full season of input imagery. Water balance ET compared favorably with the eddy covariance data after incorporating the TSEB ET. For a validation dataset, the magnitude of MBE decreased from -0.86 mm d-1 (RMSE = 1.37 mm d-1) for the Kcbrf alone to -0.45 mm d-1 (RMSE = 0.98 mm d-1) and -0.39 mm d-1 (RMSE = 0.95 mm d-1) with incorporation of the TSEB ET using the PM and PT methods, respectively. However, the magnitudes of MBE and RMSE were increased for a running average of daily computations in the full May-October periods. The hybrid model did not necessarily result in improved model performance. However, the water balance model is adaptable for real-time irrigation scheduling and may be combined with forecasted reference ET, although the low temporal frequency of satellite imagery is expected to be a challenge in real-time irrigation management. Keywords: Center-pivot irrigation, ET estimation methods, Evapotranspiration, Irrigation scheduling, Irrigation water balance, Model validation, Variable-rate irrigation.


2020 ◽  
Vol 22 (2) ◽  
pp. 440-451
Author(s):  
George Falalakis ◽  
Alexandra Gemitzi

Abstract Developing a methodology for water balance estimation is a significant challenge, especially in areas with little or no gauging. This is because direct measurements of all the water balance components are not feasible. To overcome this issue, we propose a simple methodology based on the predefined empirical relationship between remotely sensed evapotranspiration (ET), i.e. Moderate Resolution Imaging Spectroradiometer (MODIS) ET and groundwater recharge (GR), and readily available precipitation data at the monthly time step. The developed methodology was applied in seven catchments in NE Greece using time series of precipitation and remotely sensed ET from 2009 to 2019. The potential of the proposed method to accurately estimate the water balance was assessed by the comparison of the individual water balance components against modeled values. Three performance metrics were examined and indicated that the methodology produces a satisfactory outcome. Our results indicated mean ET accounting for approximately 54% of precipitation, mean GR of 24% and mean surface runoff approximately 22% of precipitation in the study area. The proposed approach was implemented using freely available remotely sensed products and the free R software for statistical computing and graphics, offering thus a convenient and inexpensive alternative for water balance estimation, even for basins with limited data availability.


2020 ◽  
Author(s):  
Matthias Huss ◽  
Enrico Mattea ◽  
Andreas Linsbauer ◽  
Martin Hoelzle

<div> <div>Numerous models to project the future evolution of mountain glaciers in response to ongoing climate change are available, both at the local and the global scale. However, a suite of partly major simplifications is necessary in these models given the restrictions in data availability. Whereas most models account for the primary feedbacks, such as the snow-ice albedo feedback and the dynamic glacier response in some way, a considerable number of yet poorly understood or less investigated feedbacks is present that might significantly hamper the reliability of current glaciological projections.</div> <div> </div> <div>Here, we present results of a detailed modelling study for the example of Vadret da Morteratsch, Swiss Alps. A surface mass balance model accounting for ice dynamics is forced with downscaled regional climate model output (68 scenarios, CH2018) for the period 2015 to 2100. Various processes are either parameterized or explicitly accounted for. We focus on the use of a fully distributed surface energy-balance approach in comparison to simplified degree-day methods. The relevance of projected changes in different components of the energy balance is assessed using model experiments. In particular, the importance of feedback effects due to (1) the spatio-temporal evolution of supraglacial debris, (2) the formation of new proglacial lakes, and (3) changes in bare-ice albedo and local direct solar irradiance is investigated.</div> <div> </div> <div>We find that the above feedback effects all have a rather small potential to substantially impact on the rates of expected glacier retreat. In some cases, this is unexpected (e.g. for debris coverage and proglacial lakes) but can be explained by compensating processes. We also discuss and visualize the future wastage of Vadret da Morteratsch under the newest generation of climate scenarios, and put these results into context with previous studies, as well as with plans to artificially reduce the rate of glacier mass loss.</div> </div>


Author(s):  
X. Chen ◽  
Z. Su ◽  
Y. Ma

<p><strong>Abstract.</strong> A global monthly evapotranspiration (ET) product without spatial-temporal gaps for 2000&amp;ndash;2017 is delivered by using an energy balance (EB) algorithm and MODIS satellite data. It provides us with a moderate resolution estimate of ET without spatial-temporal gaps on a global scale. The model is driven by monthly remote sensing land surface temperature and ERA-Interim meteorological data. A global turbulent exchange parameterization scheme was developed for global momentum and heat roughness length calculation with remote sensing information. The global roughness length was used in the energy balance model, which uses monthly land-air temperature gradient to estimate the turbulent sensible heat, and take the latent heat flux as a residual of the available energy. This study produced an ET product for global landmass, at a monthly time step and 0.05-degree spatial resolution. The performance of ET data has been evaluated in comparison to hundreds flux sites measurements representing a broad range of land covers and climates. The ET product has a mean bias of 3.3&amp;thinsp;mm/month, RMSE value of 36.9&amp;thinsp;mm/month. The monthly ET product can be used to study the global energy and hydrological cycles at either seasonal or inter-annual temporal resolution.</p>


2021 ◽  
Author(s):  
Nicola Paciolla ◽  
Chiara Corbari ◽  
Giuseppe Ciraolo ◽  
Antonino Maltese ◽  
Marco Mancini

&lt;p&gt;Remote Sensing (RS) information has progressively found, in recent years, more and more applications in hydrological modelling as a valuable tool for easy and frequent collection of geophysical data. However, this kind of data should be handled carefully, minding its characteristics, spatial resolution and the heterogeneity of the target area.&lt;/p&gt;&lt;p&gt;In this work, a scale analysis on evapotranspiration estimates over heterogeneous crops is performed combining a distributed energy-water balance model (FEST-EWB) and high-resolution remotely-sensed Land Surface Temperature (LST) and vegetation data.&lt;/p&gt;&lt;p&gt;The FEST-EWB model is calibrated on measured LST, based on a procedure where every single pixel is modified independently one from the other; hence in each pixel of the analysed domain the minimum of the pixel difference between modelled RET and satellite observed LST is searched over the period of calibration.&lt;/p&gt;&lt;p&gt;The case study is a Sicilian vineyard, with test dates in the summer of 2008. Meteorological and energy fluxes data are available from an eddy-covariance station, while LST and vegetation data are obtained from low-altitude flights at the high resolution of 1.7 metres.&lt;/p&gt;&lt;p&gt;After a preliminary calibration on LST data and validation on energy fluxes, the scale analysis is performed in two ways: model input aggregation and model output aggregation. Four coarser scales are selected in reference to some common satellite products resolution: 10.2 m (in reference to Sentinel&amp;#8217;s 10 m), 30.6 m (Landsat, 30 m), 244.8 m (MODIS visible, 250 m) and 734.4 m (MODIS, 1000 m). First, modelled surface temperature and evapotranspiration are aggregated to each scale by progressive averaging. Then, model inputs are upscaled to the same spatial resolutions and the model is calibrated anew, obtaining independent results directly at the target scale.&lt;/p&gt;&lt;p&gt;The results of the two procedures are found to be quite similar, testifying to the capacity of the model to provide accurate products for a heterogeneous area even at low resolutions. The robustness of the analysis is strengthened by a further comparison with two well-established energy-balance algorithms: the one source Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) model.&lt;/p&gt;


2011 ◽  
Vol 15 (10) ◽  
pp. 3061-3070 ◽  
Author(s):  
J. M. Sánchez ◽  
R. López-Urrea ◽  
E. Rubio ◽  
V. Caselles

Abstract. Estimates of surface actual evapotranspiration (ET) can assist in predicting crop water requirements. An alternative to the traditional crop-coefficient methods are the energy balance models. The objective of this research was to show how surface temperature observations can be used, together with a two-source energy balance model, to determine crop water use throughout the different phenological stages of a crop grown. Radiometric temperatures were collected in a sorghum (Sorghum bicolor) field as part of an experimental campaign carried out in Barrax, Spain, during the 2010 summer growing season. Performance of the Simplified Two-Source Energy Balance (STSEB) model was evaluated by comparison of estimated ET with values measured on a weighing lysimeter. Errors of ±0.14 mm h−1 and ±1.0 mm d−1 were obtained at hourly and daily scales, respectively. Total accumulated crop water use during the campaign was underestimated by 5%. It is then shown that thermal radiometry can provide precise crop water necessities and is a promising tool for irrigation management.


Sign in / Sign up

Export Citation Format

Share Document