scholarly journals Sensitivity of the West African hydrological cycle in ORCHIDEE to infiltration processes

2008 ◽  
Vol 12 (6) ◽  
pp. 1387-1401 ◽  
Author(s):  
T. d'Orgeval ◽  
J. Polcher ◽  
P. de Rosnay

Abstract. The aim of this article is to test the sensitivity of the West African hydrological cycle to infiltration processes and to river reinfiltration pathways. This is done through sensitivity experiments to both inputs and paramterization settings of the ORCHIDEE Land-Surface Model. The parameterizations to take into account the effects of flat areas, ponds and floodplains on surface infiltration, and the effect of roots and deep-soil compactness on infiltration are first described. The sensitivity analysis to parameterization settings shows that the surface infiltration processes have a stronger impact in the soudano-sahelian region and more generally in semi-arid African regions, whereas the rootzone and deep-soil infiltration also play a role in the guinean and intermediate regions between arid and humid ones. In the equatorial and semi-humid regions, infiltration processes generally play a minor role. The infiltration parameterizations may explain part of the difference between simulated and observed river discharge in semi-arid and intermediate basins. The sensitivity analysis to the Land-Surface Model inputs shows that different sources of uncertainty might also explain part of the error. Indeed, the precipitation forcing in the whole West African region, the long-term storage in the soudano-sahelian region, the soil types in the guinean region and the vegetation types in the equatorial region are significant sources of errors. Therefore, observations and analyses of small scale infiltration processes as well as continuous measurements of river discharges in West Africa are essential to ensure the reliability of future calibration for the infiltration parameterizations.

2008 ◽  
Vol 5 (4) ◽  
pp. 2251-2292 ◽  
Author(s):  
T. d'Orgeval ◽  
J. Polcher ◽  
P. de Rosnay

Abstract. The aim of this article is to test the sensitivity of the Land Surface Model (LSM) ORCHIDEE to infiltration processes in the West African region, and to validate the resulting version of ORCHIDEE against African river discharges. The parameterizations to take into account the effects of flat areas, ponds and floodplains on surface infiltration, and the effect of roots and deep-soil compactness on infiltration are first described. It is shown that the surface infiltration processes have a stronger impact in the soudano-sahelian region and more generally in semi-arid African basins, whereas the rootzone and deep-soil infiltration also play a role in the guinean region and in the intermediate basins between arid and humid ones. In the equatorial region and the semi-humid basins, infiltration processes generally play a minor role. The infiltration parameterizations may explain part of the difference between simulated and observed river discharge in semi-arid and intermediate basins. So ORCHIDEE could be recalibrated to reduce the discharge errors. However, different sources of uncertainty might also explain part of the error. Indeed, the precipitation forcing in the whole West African region, the long-term storage in the soudano-sahelian region, the soil types in the guinean region and the vegetation types in the equatorial region are significant sources of errors. Therefore, a denser monitoring of the hydrological cycle at different scales in West Africa would ensure the reliability of future calibrations for the infiltration parameterizations.


2016 ◽  
Author(s):  
Vanessa Haverd ◽  
Matthias Cuntz ◽  
Lars P. Nieradzik ◽  
Ian N. Harman

Abstract. CABLE is a global land surface model, which has been used extensively in offline and coupled simulations. While CABLE performs well in comparison with other land surface models, results are impacted by decoupling of transpiration and photosynthesis fluxes under drying soil conditions, often leading to implausibly high water use efficiencies. Here we present a solution to this problem, ensuring that modeled transpiration is always consistent with modeled photosynthesis, while introducing a parsimonious single-parameter drought response function which is coupled to root water uptake. We further improve CABLE’s simulation of coupled soil-canopy processes by introducing an alternative hydrology model with a physically accurate representation of coupled energy and water fluxes at the soil/air interface, including a more realistic formulation of transfer under atmospherically stable conditions within the canopy and in the presence of leaf litter. The effects of these model developments are assessed using data from 18 stations from the global Eddy covariance flux network FLUXNET, selected to span a large climatic range. Marked improvements are demonstrated, with root-mean-squared errors for monthly latent heat fluxes and water use efficiencies being reduced by 40 %. Results highlight the important roles of deep soil moisture in mediating drought response and litter in dampening soil evaporation.


2011 ◽  
Vol 8 (2) ◽  
pp. 2555-2608 ◽  
Author(s):  
E. H. Sutanudjaja ◽  
L. P. H. van Beek ◽  
S. M. de Jong ◽  
F. C. van Geer ◽  
M. F. P. Bierkens

Abstract. Large-scale groundwater models involving aquifers and basins of multiple countries are still rare due to a lack of hydrogeological data which are usually only available in developed countries. In this study, we propose a novel approach to construct large-scale groundwater models by using global datasets that are readily available. As the test-bed, we use the combined Rhine-Meuse basin that contains groundwater head data used to verify the model output. We start by building a distributed land surface model (30 arc-second resolution) to estimate groundwater recharge and river discharge. Subsequently, a MODFLOW transient groundwater model is built and forced by the recharge and surface water levels calculated by the land surface model. Although the method that we used to couple the land surface and MODFLOW groundwater model is considered as an offline-coupling procedure (i.e. the simulations of both models were performed separately), results are promising. The simulated river discharges compare well to the observations. Moreover, based on our sensitivity analysis, in which we run several groundwater model scenarios with various hydrogeological parameter settings, we observe that the model can reproduce the observed groundwater head time series reasonably well. However, we note that there are still some limitations in the current approach, specifically because the current offline-coupling technique simplifies dynamic feedbacks between surface water levels and groundwater heads, and between soil moisture states and groundwater heads. Also the current sensitivity analysis ignores the uncertainty of the land surface model output. Despite these limitations, we argue that the results of the current model show a promise for large-scale groundwater modeling practices, including for data-poor environments and at the global scale.


2021 ◽  
Author(s):  
Gabriele Arduini ◽  
Ervin Zsoter ◽  
Hannah Cloke ◽  
Elisabeth Stephens ◽  
Christel Prudhomme

<p>Snow processes, with the water stored in the snowpack and released as snowmelt, are very important components of the water balance, in particular in high latitude and mountain regions. The evolution of the snow cover and the timing of the snow melt can have major impact on river discharge. Land surface models are used in Earth System models to compute exchanges of water, energy and momentum between the atmosphere and the surface underneath, and also to compute other components of the hydrological cycle. In order to improve the snow representation, a new multi-layer snow scheme is under development in the HTESSEL land surface model of the European Centre for Medium‐Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS), to replace the current single-layer snow scheme used in HTESSEL. The new scheme has already been shown to improve snow and 2‐metre temperature, while in this study, the wider hydrological impact is evaluated and documented.</p><p>The analysis is done in the reanalysis context by comparing two ERA5-forced offline HTESSEL experiments. The runoff output of HTESSEL is coupled to the CaMa-Flood hydrodynamic model in order to derive river discharge. The analysis is done globally for the period between 1980-2018. The evaluation was carried out using over 1000 discharge observation time-series with varying catchment size. The hydrological response of the multi-layer snow scheme is generally positive, but in some areas the improvement is not clear and can even be negative with deteriorated signal in river discharge. Further investigation is needed to understand the complex hydrological impact of the new snow scheme, making sure it contributes to an improved description of all hydrological components of the Earth System.</p>


2014 ◽  
Vol 5 (2) ◽  
pp. 441-469 ◽  
Author(s):  
L. Wang-Erlandsson ◽  
R. J. van der Ent ◽  
L. J. Gordon ◽  
H. H. G. Savenije

Abstract. Moisture recycling, the contribution of terrestrial evaporation to precipitation, has important implications for both water and land management. Although terrestrial evaporation consists of different fluxes (i.e. transpiration, vegetation interception, floor interception, soil moisture evaporation, and open-water evaporation), moisture recycling (terrestrial evaporation–precipitation feedback) studies have up to now only analysed their combined total. This paper constitutes the first of two companion papers that investigate the characteristics and roles of different evaporation fluxes for land–atmosphere interactions. Here, we investigate the temporal characteristics of partitioned evaporation on land and present STEAM (Simple Terrestrial Evaporation to Atmosphere Model) – a hydrological land-surface model developed to provide inputs to moisture tracking. STEAM estimates a mean global terrestrial evaporation of 73 900 km3 year-1, of which 59% is transpiration. Despite a relatively simple model structure, validation shows that STEAM produces realistic evaporative partitioning and hydrological fluxes that compare well with other global estimates over different locations, seasons, and land-use types. Using STEAM output, we show that the terrestrial residence timescale of transpiration (days to months) has larger inter-seasonal variation and is substantially longer than that of interception (hours). Most transpiration occurs several hours or days after a rain event, whereas interception is immediate. In agreement with previous research, our simulations suggest that the vegetation's ability to transpire by retaining and accessing soil moisture at greater depth is critical for sustained evaporation during the dry season. We conclude that the differences in temporal characteristics between evaporation fluxes are substantial and reasonably can cause differences in moisture recycling, which is investigated more in the companion paper (van der Ent et al., 2014, hereafter Part 2).


2017 ◽  
Vol 30 (5) ◽  
pp. 1807-1819 ◽  
Author(s):  
Chi Zhang ◽  
Qiuhong Tang ◽  
Deliang Chen

Abstract Evidence has suggested a wetting trend over part of the Tibetan Plateau (TP) in recent decades, although there are large uncertainties in this trend due to sparse observations. Examining the change in the moisture source for precipitation over a region in the TP with the most obvious increasing precipitation trend may help understand the precipitation change. This study applied the modified Water Accounting Model with two atmospheric reanalyses, ground-observed precipitation, and evaporation from a land surface model to investigate the change in moisture source of the precipitation over the targeted region. The study estimated that on average more than 69% and more than 21% of the moisture supply to precipitation over the targeted region came from land and ocean, respectively. The moisture transports from the west of the TP by the westerlies and from the southwest by the Indian summer monsoon likely contributed the most to precipitation over the targeted region. The moisture from inside the region may have contributed about 18% of the total precipitation. Most of the increased moisture supply to the precipitation during 1979–2013 was attributed to the enhanced influx from the southwest and the local moisture supply. The precipitation recycling ratio over the targeted region increased significantly, suggesting an intensified hydrological cycle. Further analysis at monthly scale and with wet–dry-year composites indicates that the increased moisture contribution was mainly from the southwest and the targeted region during May and September. The enhanced water vapor transport from the Indian Ocean during July and September and the intensified local hydrological recycling seem to be the primary reasons behind the recent precipitation increase over the targeted region.


Sign in / Sign up

Export Citation Format

Share Document