scholarly journals Sediment transport modelling in a distributed physically based hydrological catchment model

2011 ◽  
Vol 15 (9) ◽  
pp. 2821-2837 ◽  
Author(s):  
M. Konz ◽  
M. Chiari ◽  
S. Rimkus ◽  
J. M. Turowski ◽  
P. Molnar ◽  
...  

Abstract. Bedload sediment transport and erosion processes in channels are important components of water induced natural hazards in alpine environments. A raster based distributed hydrological model, TOPKAPI, has been further developed to support continuous simulations of river bed erosion and deposition processes. The hydrological model simulates all relevant components of the water cycle and non-linear reservoir methods are applied for water fluxes in the soil, on the ground surface and in the channel. The sediment transport simulations are performed on a sub-grid level, which allows for a better discretization of the channel geometry, whereas water fluxes are calculated on the grid level in order to be CPU efficient. Several transport equations as well as the effects of an armour layer on the transport threshold discharge are considered. Flow resistance due to macro roughness is also considered. The advantage of this approach is the integrated simulation of the entire basin runoff response combined with hillslope-channel coupled erosion and transport simulation. The comparison with the modelling tool SETRAC demonstrates the reliability of the modelling concept. The devised technique is very fast and of comparable accuracy to the more specialised sediment transport model SETRAC.

2010 ◽  
Vol 7 (5) ◽  
pp. 7591-7631 ◽  
Author(s):  
M. Konz ◽  
M. Chiari ◽  
S. Rimkus ◽  
J. M. Turowski ◽  
P. Molnar ◽  
...  

Abstract. Sediment transport and erosion processes in channels are important components of water induced natural hazards in alpine environments. A distributed hydrological model, TOPKAPI, has been developed to support continuous simulations of river bed erosion and deposition processes. The hydrological model simulates all relevant components of the water cycle and non-linear reservoir methods are applied for water fluxes in the soil, on the surface and in the channel. The sediment transport simulations are performed on a sub-grid level, which allows for a better discretization of the channel geometry, whereas water fluxes are calculated on the grid level in order to be CPU efficient. Flow resistance due to macro roughness is considered in the simulation of sediment transport processes. Several transport equations as well as the effects of armour layers on the transport threshold discharge are considered. The advantage of this approach is the integrated simulation of the entire water balance combined with hillslope-channel coupled erosion and transport simulation. The comparison with the modelling tool SETRAC and with LiDAR based reconstructed sediment transport rates demonstrates the reliability of the modelling concept. The modelling method is very fast and of comparable accuracy to the more specialised sediment transport model SETRAC.


Author(s):  
C. F. Castro-Bolinaga ◽  
E. R. Zavaleta ◽  
P. Diplas

Abstract. This paper presents the preliminary results of a coupled modelling effort to study the fate of tailings (radioactive waste-by product) downstream of the Coles Hill uranium deposit located in Virginia, USA. The implementation of the overall modelling process includes a one-dimensional hydraulic model to qualitatively characterize the sediment transport process under severe flooding conditions downstream of the potential mining site, a two-dimensional ANSYS Fluent model to simulate the release of tailings from a containment cell located partially above the local ground surface into the nearby streams, and a one-dimensional finite-volume sediment transport model to examine the propagation of a tailings sediment pulse in the river network located downstream. The findings of this investigation aim to assist in estimating the potential impacts that tailings would have if they were transported into rivers and reservoirs located downstream of the Coles Hill deposit that serve as municipal drinking water supplies.


2010 ◽  
Vol 10 (4) ◽  
pp. 805-817 ◽  
Author(s):  
P.-A. Versini ◽  
E. Gaume ◽  
H. Andrieu

Abstract. This paper presents an initial prototype of a distributed hydrological model used to map possible road inundations in a region frequently exposed to severe flash floods: the Gard region (South of France). The prototype has been tested in a pseudo real-time mode on five recent flash flood events for which actual road inundations have been inventoried. The results are promising: close to 100% probability of detection of actual inundations, inundations detected before they were reported by the road management field teams with a false alarm ratios not exceeding 30%. This specific case study differs from the standard applications of rainfall-runoff models to produce flood forecasts, focussed on a single or a limited number of gauged river cross sections. It illustrates that, despite their lack of accuracy, hydro-meteorological forecasts based on rainfall-runoff models, especially distributed models, contain valuable information for flood event management. The possible consequences of landslides, debris flows and local erosion processes, sometimes associated with flash floods, were not considered at this stage of development of the prototype. They are limited in the Gard region but should be taken into account in future developments of the approach to implement it efficiently in other areas more exposed to these phenomena such as the Alpine area.


2016 ◽  
Vol 20 (7) ◽  
pp. 2827-2840 ◽  
Author(s):  
Delphine J. Leroux ◽  
Thierry Pellarin ◽  
Théo Vischel ◽  
Jean-Martial Cohard ◽  
Tania Gascon ◽  
...  

Abstract. Precipitation forcing is usually the main source of uncertainty in hydrology. It is of crucial importance to use accurate forcing in order to obtain a good distribution of the water throughout the basin. For real-time applications, satellite observations allow quasi-real-time precipitation monitoring like the products PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks, TRMM (Tropical Rainfall Measuring Mission) or CMORPH (CPC (Climate Prediction Center) MORPHing). However, especially in West Africa, these precipitation satellite products are highly inaccurate and the water amount can vary by a factor of 2. A post-adjusted version of these products exists but is available with a 2 to 3 month delay, which is not suitable for real-time hydrologic applications. The purpose of this work is to show the possible synergy between quasi-real-time satellite precipitation and soil moisture by assimilating the latter into a hydrological model. Soil Moisture Ocean Salinity (SMOS) soil moisture is assimilated into the Distributed Hydrology Soil Vegetation Model (DHSVM) model. By adjusting the soil water content, water table depth and streamflow simulations are much improved compared to real-time precipitation without assimilation: soil moisture bias is decreased even at deeper soil layers, correlation of the water table depth is improved from 0.09–0.70 to 0.82–0.87, and the Nash coefficients of the streamflow go from negative to positive. Overall, the statistics tend to get closer to those from the reanalyzed precipitation. Soil moisture assimilation represents a fair alternative to reanalyzed rainfall products, which can take several months before being available, which could lead to a better management of available water resources and extreme events.


Author(s):  
Taichi Kosako ◽  
Yasuyuki Nakagawa ◽  
Takashi Umeyama ◽  
Masaru Takayama

In coastal and estuarine environments, sand-mud mixtures are often formed due to supply of various types of sediment discharge from rivers. For better prediction of the sediment transport patterns and the resultant bathymetry changes in these areas, it is important to apply a sediment transport model that can represent the behavior of sand-mud mixtures depending on the mud content to the simulation. This study aims at elucidating the effect of the mud content on the erosion processes of sand-mud mixtures under the combined wave and current forces through a field observation and flume experiments. A sand-mud mixture transport model was validated based on the field and experimental results.


10.29007/gmfw ◽  
2018 ◽  
Author(s):  
Qiang Ma ◽  
Ngoc Duong Vo ◽  
Philippe Gourbesville

During last decade, due to intensification of urbanization, connections between human and nature become more closed. Through hydro-informatics applications, such as hydrological or hydraulic model simulations, for local water managers, their knowledge and understanding of regional hydrological characteristics can be strongly improved. Among different kinds of hydrological models, the deterministic distributed hydrological model (MIKE SHE), shows obvious advantages in integrate representing multiple hydrological processes in catchment water cycle and producing more accuracy and detail results at any places on the simulation domain. This research is in project of AquaVar, which aims to create one model-based DSS in Var catchment at French Mediterranean Region. The main objective of this study is to build one deterministic distributed hydrological model through one optimized modelling strategy, which is able to overcome to problems caused by missing data, to well represent the complicated hydrological system in Var catchment. Based on a series of hydrological assessments and model testes, under reasonable hypothesized conditions, the model of MIKE SHE was calibrated from 2008 to 2011 and validated from 2011 to 2013 with daily time interval. With high statistical performance and can well presentation of the floods occurred during simulation period, the model results is able to be applied in AquaVar DSS for real time simulation and forecasting further scenarios. Besides, the modelling strategy conceived in this research can be also applied for building deterministic distributed hydrological models in other similar area.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2736
Author(s):  
Muhammad Khan ◽  
Jürgen Stamm ◽  
Sajjad Haider

Reservoir sedimentation reduces the gross storage capacity of dams and also negatively impacts turbine functioning, posing a danger to turbine inlets. When the sediment delta approaches the dam, further concerns arise regarding sediments passing through turbine intakes, blades abrasion due to increased silt/sand concentration, choking of outlets, and dam safety. Thus, slowing down the delta advance rate is a worthy goal from a dam manager’s viewpoint. These problems can be solved through a flexible reservoir operation strategy that prioritize sediment deposition further away from the dam face. As a case study, the Mangla Reservoir in Pakistan is selected to elaborate the operational strategy. The methodology rests upon usage of a 1D sediment transport model to quantify the impact of different reservoir operating strategies on sedimentation. Further, in order to assess the long-term effect of a changing climate, a global climate model under representative concentration pathways scenarios 4.5 and 8.5 for the 21st century is used. The reduction of uncertainty in the suspended sediments concentration is achieved by employing an artificial neural networking technique. Moreover, a sensitivity analysis focused on estimating the impact of various parameters on sediment transport modelling was conducted. The results show that a gradual increase in the reservoir minimum operating level slows down the delta movement rate and the bed level close to the dam. However, it may compromise the downstream irrigation demand during periods of high water demand. The findings may help the reservoir managers to improve the reservoir operation rules and ultimately support the objective of a sustainable reservoir use for the societal benefit.


2011 ◽  
Vol 8 (1) ◽  
pp. 1329-1364 ◽  
Author(s):  
G. Thirel ◽  
P. Salamon ◽  
P. Burek ◽  
M. Kalas

Abstract. Snow is an important component of the water cycle and its estimation in hydrological models is of great importance concerning snow melting flood events simulations and forecasting. The LISFLOOD model is a spatially distributed hydrological model designed at the Joint Research Centre for large European river basins. It is used for a variety of applications including flood forecasting and assessing the effects of land use change and climate change. In order to improve the streamflow simulations of this model, especially with respect to snowmelt induced floods, the assimilation of Snow Cover Area (SCA) has been evaluated in this study. For this purpose daily 420 m-resolution MODIS satellital SCA data have been used, which were then converted in Snow Water Equivalent (SWE) using a Snow Depletion Curve. Tests were performed over the Morava basin, a tributary of the Danube, for a period of almost three years. Two data assimilation techniques, the Ensemble Kalman Filter (EnKF) and the particle filter, were compared, for assimilating the MODIS composites of SCA every seven days. Two approaches were tested, in which the SWE of the model was adjusted either using three altitudinal-based zones or seven sub-basins-based zones. These experiments showed the improvement of the SWE of the model when compared with MODIS-derived snow for both the EnKF and the particle filter. However, on average only the particle filter improved the discharge simulation, because the EnKF imposed too important water balance modifications, which deteriorated the simulation of the discharges during the snow melt periods.


Sign in / Sign up

Export Citation Format

Share Document