scholarly journals Sediment transport modelling in a distributed physically based hydrological catchment model

2010 ◽  
Vol 7 (5) ◽  
pp. 7591-7631 ◽  
Author(s):  
M. Konz ◽  
M. Chiari ◽  
S. Rimkus ◽  
J. M. Turowski ◽  
P. Molnar ◽  
...  

Abstract. Sediment transport and erosion processes in channels are important components of water induced natural hazards in alpine environments. A distributed hydrological model, TOPKAPI, has been developed to support continuous simulations of river bed erosion and deposition processes. The hydrological model simulates all relevant components of the water cycle and non-linear reservoir methods are applied for water fluxes in the soil, on the surface and in the channel. The sediment transport simulations are performed on a sub-grid level, which allows for a better discretization of the channel geometry, whereas water fluxes are calculated on the grid level in order to be CPU efficient. Flow resistance due to macro roughness is considered in the simulation of sediment transport processes. Several transport equations as well as the effects of armour layers on the transport threshold discharge are considered. The advantage of this approach is the integrated simulation of the entire water balance combined with hillslope-channel coupled erosion and transport simulation. The comparison with the modelling tool SETRAC and with LiDAR based reconstructed sediment transport rates demonstrates the reliability of the modelling concept. The modelling method is very fast and of comparable accuracy to the more specialised sediment transport model SETRAC.

2011 ◽  
Vol 15 (9) ◽  
pp. 2821-2837 ◽  
Author(s):  
M. Konz ◽  
M. Chiari ◽  
S. Rimkus ◽  
J. M. Turowski ◽  
P. Molnar ◽  
...  

Abstract. Bedload sediment transport and erosion processes in channels are important components of water induced natural hazards in alpine environments. A raster based distributed hydrological model, TOPKAPI, has been further developed to support continuous simulations of river bed erosion and deposition processes. The hydrological model simulates all relevant components of the water cycle and non-linear reservoir methods are applied for water fluxes in the soil, on the ground surface and in the channel. The sediment transport simulations are performed on a sub-grid level, which allows for a better discretization of the channel geometry, whereas water fluxes are calculated on the grid level in order to be CPU efficient. Several transport equations as well as the effects of an armour layer on the transport threshold discharge are considered. Flow resistance due to macro roughness is also considered. The advantage of this approach is the integrated simulation of the entire basin runoff response combined with hillslope-channel coupled erosion and transport simulation. The comparison with the modelling tool SETRAC demonstrates the reliability of the modelling concept. The devised technique is very fast and of comparable accuracy to the more specialised sediment transport model SETRAC.


2021 ◽  
Author(s):  
Naomi Moshe ◽  
Oded Katz ◽  
Adi Torfstein ◽  
Mor Kanari ◽  
Pere Masque ◽  
...  

<p>Submarine canyons are prominent features in continental slopes. They play an important role in sediment transport to the deep sea, as they form conduits for turbidity currents and cause landslides due their steep slopes. Such mass transport events could create geo-hazards, which compromise infrastructures along the continental slope.</p><p>Our research focuses on the Nahariya Canyon, which is part of a series of submarine canyons located along the continental slopes of the eastern Mediterranean, offshore northern Israel. This canyon is incised into the slope and does not reach the shelf. Here, we report the results from a study of two piston cores sampled in the canyon at water depths of 650m (NAC650, ~2.5m long) and 915m (NAC915, ~6m long). Chronologies were established based radiocarbon dating using slope foraminiferal shells, in addition to <sup>210</sup>Pb and OSL dating of bulk sediment. The sediments were characterized by major and trace element concentrations, mineralogy, grain size, and dead foraminiferal assemblages. We further identified the living (Rose-Bengal stained) foraminiferal species at three depths habitats (200m 650m and 915m water depth).</p><p>Our results show that both piston cores are comprised of a capping ~40 cm thick interval of fine laminated mud, deposited over the last ~150-200 years, apparently reflecting hemipelagic sedimentation. This capping interval unconformably overlays a consolidated sequence in both cores, which indicates a major sediment removal. The consolidated sequence in NAC650 is mostly homogenous and dates to the previous glacial (>140 ka), and in NAC915 the upper 70 cm of the consolidated sequence consists mud clasts dated to 27-46 ka that overlay an ‘S shape’ shear zone, which is a result of a down canyon mass wasting (debrite). Below that debrite, the sediment is mostly homogenous and dates to the last glacial (>25 ka). Broken shells of shallow benthic foraminiferal species such as Ammonia spp., Asterigerinata mamilla, Miliolids, Rosalina spp. and Sorites orbiculus are found abundantly throughout both piston-cores, varying between in-core intervals, indicating that allochthonous sediments are prevalent at those cores. Same shallow species are found also in the surface (living) assemblages, mixed with slope deep foraminiferal species. Moreover, the deep living foraminiferal shells are well preserved, in contrast to the shallow living species. Taken together, these indicate that sediment transport processes along the canyon exist to this day.</p><p>The cores suggest that the canyon is an erosive environment at least since the last glacial maximum, when the last significant mass wasting deposit is recorded. The Holocene is not represented in the records, probably due to the dominance of erosion processes, except for a thin layer of sediment deposited over the last two centuries that prevails along the entire canyon.</p>


2010 ◽  
Vol 10 (4) ◽  
pp. 805-817 ◽  
Author(s):  
P.-A. Versini ◽  
E. Gaume ◽  
H. Andrieu

Abstract. This paper presents an initial prototype of a distributed hydrological model used to map possible road inundations in a region frequently exposed to severe flash floods: the Gard region (South of France). The prototype has been tested in a pseudo real-time mode on five recent flash flood events for which actual road inundations have been inventoried. The results are promising: close to 100% probability of detection of actual inundations, inundations detected before they were reported by the road management field teams with a false alarm ratios not exceeding 30%. This specific case study differs from the standard applications of rainfall-runoff models to produce flood forecasts, focussed on a single or a limited number of gauged river cross sections. It illustrates that, despite their lack of accuracy, hydro-meteorological forecasts based on rainfall-runoff models, especially distributed models, contain valuable information for flood event management. The possible consequences of landslides, debris flows and local erosion processes, sometimes associated with flash floods, were not considered at this stage of development of the prototype. They are limited in the Gard region but should be taken into account in future developments of the approach to implement it efficiently in other areas more exposed to these phenomena such as the Alpine area.


2010 ◽  
Vol 34 (2) ◽  
pp. 123-150 ◽  
Author(s):  
E. Nadal-Romero ◽  
D. Regüés

This study investigates the geomorphological dynamics of badland areas in the Araguás catchment (0.45 km2) in the Central Pyrenees. The genesis and development of badlands in the Central Pyrenees is favoured by the presence of Eocene marls and a markedly seasonal climate. The Araguás catchment has been monitored since 2004. Analysis of weathering processes and regolith dynamics showed that alternating freeze-thaw and wetting-drying cycles are the main causes of regolith development and weathering, and effectiveness and intensity of these processes is maximum in winter and summer. Evolution of the badland surfaces is related to regolith moisture level and temperature, closely associated with the season and slope exposure, which cause cyclical variations in regolith physical conditions. The most important effect associated with regolith dynamics is the temporal delay between maximum rainfall erosivity and variation in maximum surface runoff generation, reflected in seasonal differences in sediment transport. The dynamics of weathering and erosion processes affecting badland areas are the principal factors controlling geomorphological development, and the extreme hydrological and sedimentological responses of badlands are the main effects of such morphologies. From a hydrological point of view, badlands increase water production, and flood frequency relative to neighbouring areas; from a sedimentological point of view, suspended sediment transport from badland areas can reach amounts two or three orders of magnitude higher than other nearby environments. Given these results, possible responses of badland dynamics to altered hydroclimatic regime are briefly discussed.


Author(s):  
Aaron Porter ◽  
Vladimir Shepsis ◽  
George Kaminsky ◽  
David Michalsen

This study was initiated by the Port of Grays Harbor and the City of Ocean Shores, WA to address ongoing shoreline erosion processes, and sedimentation at the Grays Harbor Federal Navigation Channel. The North Jetty at the entrance to Grays Harbor Estuary, WA was constructed at the beginning of last century (1907) and resulted in major regional changes to the coastline. During the first 40 years post-construction of the jetty, approximately ten miles of sandy beach shoreline, two miles wide north of the jetty, was created by natural sediment transport processes. The accreted land was the base for the creation of the City of Ocean Shores. Since that time the shoreline has been periodically altered by extreme erosion events.


1992 ◽  
Vol 26 (5-6) ◽  
pp. 1421-1430 ◽  
Author(s):  
T. Kusuda ◽  
T. Futawatari

Based on the results of field observation in a tidal river, modeling of sediment transport processes is performed and the suspended sediment transport over a long term is simulated with a newly developed procedure, in which the Lagrangian reference frame is used in order to reduce numerical dispersion. The suspended sediment transport in the tidal river is calculated with erosion and deposition of sediments, consolidation of fluid mud to bed mud, and transport by turbidity current. Sediment transport processes concerned with formation and maintenance of turbidity maxima are sufficiently simulated for a fortnightly cycle with the Lagrangian sediment transport model (LSTM).


2016 ◽  
Vol 20 (7) ◽  
pp. 2827-2840 ◽  
Author(s):  
Delphine J. Leroux ◽  
Thierry Pellarin ◽  
Théo Vischel ◽  
Jean-Martial Cohard ◽  
Tania Gascon ◽  
...  

Abstract. Precipitation forcing is usually the main source of uncertainty in hydrology. It is of crucial importance to use accurate forcing in order to obtain a good distribution of the water throughout the basin. For real-time applications, satellite observations allow quasi-real-time precipitation monitoring like the products PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks, TRMM (Tropical Rainfall Measuring Mission) or CMORPH (CPC (Climate Prediction Center) MORPHing). However, especially in West Africa, these precipitation satellite products are highly inaccurate and the water amount can vary by a factor of 2. A post-adjusted version of these products exists but is available with a 2 to 3 month delay, which is not suitable for real-time hydrologic applications. The purpose of this work is to show the possible synergy between quasi-real-time satellite precipitation and soil moisture by assimilating the latter into a hydrological model. Soil Moisture Ocean Salinity (SMOS) soil moisture is assimilated into the Distributed Hydrology Soil Vegetation Model (DHSVM) model. By adjusting the soil water content, water table depth and streamflow simulations are much improved compared to real-time precipitation without assimilation: soil moisture bias is decreased even at deeper soil layers, correlation of the water table depth is improved from 0.09–0.70 to 0.82–0.87, and the Nash coefficients of the streamflow go from negative to positive. Overall, the statistics tend to get closer to those from the reanalyzed precipitation. Soil moisture assimilation represents a fair alternative to reanalyzed rainfall products, which can take several months before being available, which could lead to a better management of available water resources and extreme events.


1984 ◽  
Vol 1 (19) ◽  
pp. 199
Author(s):  
E.J. Hayter ◽  
A.J. Mehta

Cohesive sediment related problems in estuaries include shoaling in navigable waterways and water pollution. A two-dimensional, depth averaged, finite element cohesive sediment transport model, CSTM-H, has been developed and may be used to assist in predicting the fate of sorbed pollutants and the frequency and quantity of dredging required to maintain navigable depths. Algorithms which describe the transport processes of redispersion, resuspenslon, dispersive transport, settling, deposition, bed formation and bed consolidation are incorporated in CSTM-H. The Galerkin weighted residual method is used to solve the advection-dispersion equation with appropriate source/sink terms at each time step for the nodal suspended sediment concentrations. The model yields stable and converging solutions. Verification was carried out against a series of erosion-deposition experiments in the laboratory using kaolinite and a natural mud as sediment. A model application under prototype conditions is described.


2021 ◽  
Vol 11 (3) ◽  
pp. 158-176
Author(s):  
Reygie Quiñanola Macasieb ◽  
Christian Rodriguez Orozco ◽  
Augustus Cooper Resurreccion

This study provides a simulation of mercury (Hg) transport in water and sediments in the mining-impacted Ambalanga River located in Upper Agno Subbasin in the Philippines. The Hydrologic Engineering Center - Hydrologic Modeling System (HEC-HMS) and Water Quality Analysis Simulation Program (WASP) of the US Environmental Protection Agency (EPA) were coupled to handle both hydrologic modelling and total Hg transport processes, respectively, for 12 months in the year 2014. Watershed delineation from Digital Elevation Model, rainfall and streamflow data from the local weather bureau, and dam operational data were used to develop the hydrological model. The calibrated HEC-HMS model satisfactorily simulated the flow in the river and its tributaries, which is then used as an input to the Hg transport model. The Ambalanga subbasin was conceptually divided into 29 segments in WASP to represent the water column and the surface benthic sediment. Time-variable sediment and Hg load were applied to the upstream of Ambalanga River. Total Hg concentration in water and sediments at five sampling locations along the Ambalanga River and two sampling locations along the Upper Agno River were measured in 2014-2015, in addition to the Hg monitoring data from the local environmental bureau. The gathered data were used to validate the WASP model, and results show that it was able to reasonably simulate the Hg fate and transport. Simulation results showed a downward trend in Hg concentration in surface water and sediments from upstream to downstream, while Hg in sediments was observed to stabilize over time. The model was further utilized to come up with exceedance curves of Hg in water and sediments as a result of the river’s response to different Hg loading from the known point sources. The exceedance curves derived from the model were used to determine the maximum permissible Hg loading to the river and identify pollution load reduction measures for river rehabilitation.


Sign in / Sign up

Export Citation Format

Share Document