scholarly journals Technical Note: Glacial influence in tropical mountain hydrosystems evidenced by the diurnal cycle in water levels

2013 ◽  
Vol 17 (12) ◽  
pp. 4803-4816 ◽  
Author(s):  
S. Cauvy-Fraunié ◽  
T. Condom ◽  
A. Rabatel ◽  
M. Villacis ◽  
D. Jacobsen ◽  
...  

Abstract. Worldwide, the rapid shrinking of glaciers in response to ongoing climate change is modifying the glacial meltwater contribution to hydrosystems in glacierized catchments. Determining the influence of glacial runoff to streams is therefore of critical importance to evaluate potential impact of glacier retreat on water quality and aquatic biota. This task has challenged both glacier hydrologists and ecologists over the last 20 yr due to both structural and functional complexity of the glacier–stream system interface. Here we propose quantifying the diurnal cycle amplitude of the streamflow to determine the glacial influence in glacierized catchments. We performed water-level measurements using water pressure loggers over 10 months at 30 min time steps in 15 stream sites in 2 glacier-fed catchments in the Ecuadorian Andes (> 4000 m a.s.l.) where no perennial snow cover is observed outside the glaciers. For each stream site, we performed wavelet analyses on water-level time series, determined the scale-averaged wavelet power spectrum at 24 h scale and defined three metrics, namely the power, frequency and temporal clustering of the diurnal flow variation. The three metrics were then compared to the percentage of the glacier cover in the catchments, a metric of glacial influence widely used in the literature. As expected, we found that the diurnal variation power of glacier-fed streams decreased downstream with the addition of non-glacial tributaries. We also found that the diurnal variation power and the percentage of the glacier cover in the catchment were significantly positively correlated. Furthermore, we found that our method permits the detection of glacial signal in supposedly non-glacial sites, thereby revealing glacial meltwater resurgence. While we specifically focused on the tropical Andes in this paper, our approach to determine glacial influence may have potential applications in temperate and arctic glacierized catchments. The measure of diurnal water amplitude therefore appears as a powerful and cost-effective tool to understand the hydrological links between glaciers and hydrosystems better and assess the consequences of rapid glacier shrinking.

2013 ◽  
Vol 10 (4) ◽  
pp. 4369-4395 ◽  
Author(s):  
S. Cauvy-Fraunié ◽  
T. Condom ◽  
A. Rabatel ◽  
M. Villacis ◽  
D. Jacobsen ◽  
...  

Abstract. Worldwide, the rapid shrinking of glaciers in response to ongoing climate change is currently modifying the glacial meltwater contribution to hydrosystems in glacierized catchments. Assessing the contribution of glacier run-off to stream discharge is therefore of critical importance to evaluate potential impact of glacier retreat on water quality and aquatic biota. This task has challenged both glacier hydrologists and ecologists over the last 20 yr due to both structural and functional complexity of the glacier-stream system interface. Here we propose a new methodological approach based on wavelet analyses on water depth time series to determine the glacial influence in glacierized catchments. We performed water depth measurement using water pressure loggers over ten months in 15 stream sites in two glacier-fed catchments in the Ecuadorian Andes (> 4000 m). We determined the global wavelet spectrum of each time series and defined the Wavelet Glacier Signal (WGS) as the ratio between the global wavelet power spectrum value at a 24 h-scale and its corresponding significance value. To test the relevance of the WGS we compared it with the percentage of the glacier cover in the catchments, a metric of glacier influence often used in the literature. We then tested whether one month data could be sufficient to reliably determine the glacial influence. As expected we found that the WGS of glacier-fed streams decreased downstream with the increasing of non-glacial tributaries. We also found that the WGS and the percentage of the glacier cover in the catchment were significantly positively correlated and that one month data was sufficient to identify and compare the glacial influence between two sites, provided that the water level time series were acquired over the same period. Furthermore, we found that our method permits to detect glacial signal in supposedly non-glacial sites, thereby evidencing glacial meltwater infiltrations. While we specifically focused on the tropical Andes in this paper, our approach to determine glacier influence would be applicable to temperate and arctic glacierized catchments. The WGS therefore appears as a powerful and cost effective tool to better understand the hydrological links between glaciers and hydrosystems and assess the consequences of rapid glacier melting.


1997 ◽  
Vol 24 ◽  
pp. 288-292 ◽  
Author(s):  
Andrew P. Barrett ◽  
David N. Collins

Combined measurements of meltwater discharge from the portal and of water level in a borehole drilled to the bed of Findelengletscher, Switzerland, were obtained during the later part of the 1993 ablation season. A severe storm, lasting from 22 through 24 September, produced at least 130 mm of precipitation over the glacier, largely as rain. The combined hydrological records indicate periods during which the basal drainage system became constricted and water storage in the glacier increased, as well as phases of channel growth. During the storm, water pressure generally increased as water backed up in the drainage network. Abrupt, temporary falls in borehole water level were accompanied by pulses in portal discharge. On 24 September, whilst borehole water level continued to rise, water started to escape under pressure with a resultant increase in discharge. As the drainage network expanded, a large amount of debris was flushed from a wide area of the bed. Progressive growth in channel capacity as discharge increased enabled stored water to drain and borehole water level to fall rapidly. Possible relationships between observed borehole water levels and water pressures in subglacial channels are influenced by hydraulic conditions at the base of the hole, distance between the hole and a channel, and the nature of the substrate.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 502
Author(s):  
Jinman Kim ◽  
Heuisoo Han ◽  
Yoonhwa Jin

This paper shows the results of a field appliance study of the hydraulic well method to prevent embankment piping, which is proposed by the Japanese Matsuyama River National Highway Office. The large-scale embankment experiment and seepage analysis were conducted to examine the hydraulic well. The experimental procedure is focused on the pore water pressure. The water levels of the hydraulic well were compared with pore water pressure data, which were used to look over the seepage variations. Two different types of large-scale experiments were conducted according to the installation points of hydraulic wells. The seepage velocity results by the experiment were almost similar to those of the analyses. Further, the pore water pressure oriented from the water level variations in the hydraulic well showed similar patterns between the experiment and numerical analysis; however, deeper from the surface, the larger pore water pressure of the numerical analysis was calculated compared to the experimental values. In addition, the piping effect according to the water level and location of the hydraulic well was quantitatively examined for an embankment having a piping guide part. As a result of applying the hydraulic well to the point where piping occurred, the hydraulic well with a 1.0 m water level reduced the seepage velocity by up to 86%. This is because the difference in the water level between the riverside and the protected side is reduced, and it resulted in reducing the seepage pressure. As a result of the theoretical and numerical hydraulic gradient analysis according to the change in the water level of the hydraulic well, the hydraulic gradient decreased linearly according to the water level of the hydraulic well. From the results according to the location of the hydraulic well, installation of it at the point where piping occurred was found to be the most effective. A hydraulic well is a good device for preventing the piping of an embankment if it is installed at the piping point and the proper water level of the hydraulic well is applied.


2016 ◽  
Vol 47 (4) ◽  
pp. 888-901 ◽  
Author(s):  
Marek Marciniak ◽  
Anna Szczucińska

The aim of this paper is to study diurnal fluctuations of the water level in streams draining headwaters and to identify the controlling factors. The fieldwork was carried out in the Gryżynka River catchment, western Poland. The water levels of three streams draining into the headwaters via a group of springs were monitored in the years 2011–2014. Changes in the water pressure and water temperature were recorded by automatic sensors – Schlumberger MiniDiver type. Simultaneously, Barodiver type sensors were used to record air temperature and atmospheric pressure, as it was necessary to adjust the data collected by the MiniDivers calculate the water level. The results showed that diurnal fluctuations in water level of the streams ranged from 2 to 4 cm (approximately 10% of total water depth) and were well correlated with the changes in evapotranspiration as well as air temperature. The observed water level fluctuations likely have resulted from processes occurring in the headwaters. Good correlation with atmospheric conditions indicates control by daily variations of the local climate. However, the relationship with water temperature suggests that fluctuations are also caused by changes in the temperature-dependent water viscosity and, consequently, by diurnal changes in the hydraulic conductivity of the hyporheic zone.


Author(s):  
Nalina Suresh ◽  
Valerianus Hashiyana ◽  
Victor Panduleni Kulula ◽  
Shreekanth Thotappa

With advancement in technology and ever-changing weather conditions, accurate and affordable water level measurement systems has become necessary for farmers. This therefore brings about the need for a system incorporating the use of IoT technology that will monitor water levels at a cost-effective price with accurate and dependable results. The prototype will monitor water levels on a regular basis and the data captured will be stored in a database to help farmers improve the way they manage their water resource. Farmers will be able to monitor the water levels from any location at any given time. This chapter focuses on a Smart Water Level Monitoring System for Farmers and provides a smart way to manage water resources on farms in the most cost-effective and convenient manner for farmers.


1997 ◽  
Vol 24 ◽  
pp. 288-292 ◽  
Author(s):  
Andrew P. Barrett ◽  
David N. Collins

Combined measurements of meltwater discharge from the portal and of water level in a borehole drilled to the bed of Findelengletscher, Switzerland, were obtained during the later part of the 1993 ablation season. A severe storm, lasting from 22 through 24 September, produced at least 130 mm of precipitation over the glacier, largely as rain. The combined hydrological records indicate periods during which the basal drainage system became constricted and water storage in the glacier increased, as well as phases of channel growth. During the storm, water pressure generally increased as water backed up in the drainage network. Abrupt, temporary falls in borehole water level were accompanied by pulses in portal discharge. On 24 September, whilst borehole water level continued to rise, water started to escape under pressure with a resultant increase in discharge. As the drainage network expanded, a large amount of debris was flushed from a wide area of the bed. Progressive growth in channel capacity as discharge increased enabled stored water to drain and borehole water level to fall rapidly. Possible relationships between observed borehole water levels and water pressures in subglacial channels are influenced by hydraulic conditions at the base of the hole, distance between the hole and a channel, and the nature of the substrate.


1979 ◽  
Vol 23 (89) ◽  
pp. 429-430 ◽  
Author(s):  
H. Röthlisberger ◽  
A. Iken ◽  
U. Spring

AbstractA technique for drilling deep holes with a hot-water jet has been developed in recent years at our institute (Iken and others, [1977]). The holes have served to investigate the water pressure at the bed of various Swiss glaciers since 1973. Drainage occurred naturally in rare cases when the drill reached the bed, but more often it was necessary to use explosives first, probably because the drill was stopped short of the bottom of the glacier by rock inclusions in the ice. In order to record piezometric water pressure over an extended period of time it was necessary that water was draining fairly continuously into the hole, otherwise the water level dropped eventually to a great depth when the weather turned cold, whereupon the holes closed off. By suddenly shutting off the water supply to a hole and observing the lowering of the water level with time some information on the channel characteristics has been obtained. In many cases there was little change of level, indicating that such a hole gives almost the true pressure head of the subglacial drainage system.Our efforts have so far been concentrated on flat tongues of fair size over 100 m thick, the distance from the uppermost hole to the terminus ranging from about 1 to 4.5 km. The main characteristic of the water pressure is a very large diurnal variation of the order of 100 m and more. The mean pressure generally rises and falls in times of high and low water supply, respectively, but re-adjusts to approximately the original level within a few days. Mean levels are higher early in the melt season than later, and the amplitude of the diurnal variation has a tendency to increase with time, but also shows strong short-term modulations depending on the water supply. From observations on moulins and a hole which had remained connected to the bed from the previous year it seems likely that at the beginning of the melt season the water pressure at the bed may become as large as or larger than the ice pressure.On Gornergletscher a record of water pressures has been obtained during the drainage of Gornersee, an ice-dammed lake at the confluence of the two main branches of the glacier. Levels stayed high day and night in the piezometer holes, which were located off to the side of where the main drainage channel was suspected to pass through. The surface drainage pattern was affected over a large area of the glacier. These two observations indicate that during the drainage of the lake some sort of sheet flow must have occurred. The surface velocity of the glacier roughly doubled during that time, but no lifting-up of the ice was observed within the accuracy of the survey. On one occasion on Glacier de Breney the main channel must have been blocked temporarily between an upper area, where the water level was rising simultaneously in three piezometer holes, and an area further down-glacier, where the holes were not affected.


Author(s):  
R. Asmaranto ◽  
D. Sisinggih ◽  
R.N.A Rastanto

Lots of dam failures are the result of uncontrolled seepage. The collapse of the Situ Gintung Dam in Tangerang, Banten-Indonesia in 2009 due to heavy rains caused the dam structure to collapse. This is due to increased pore water pressure in the landfill. To anticipate collapse due to uncontrolled seepage, it is necessary to monitor it based on the behavior of changes in rainfall and reservoir water levels. Seepage within the dam body is often monitored using instrumentation tools such as standpipe piezometer (standpipe piezometer) or electric piezometer. But often the piezometer cannot work properly because it is clogged, so it cannot monitor the condition of the seepage. Other instrumentations such as V-Notch are also used to measure seepage discharge. This study aims to determine the behavior of changes in the reservoir water level caused by changes in rainfall and its effect on body seepage of the earth-fill Type dam. By knowing the phenomenon of the behavior of the relationship between reservoir water infiltration and rainfall, it will obtain information on rainfall that endangers the dam which will affect the downstream. In this study, a case study of the Selorejo Dam was taken which has a large enough reservoir capacity of about 31 million m3 which is included in the Brantas River Basin. The results showed that 5 piezometers devices were damaged (SL 1, SL 2, SL 4, SL 6, and SL 7) where they could not read the phreatic water level properly, and 2 piezometers were less sensitive to reading fluctuations in reservoir water levels. namely SL 10 and SL 11 which showed R2 values of 29.78% and 39.4%, respectively. While the maximum seepage discharge is recorded at 1474 liters/minute, this is still below the critical discharge of 1630 liters/minute allowed for this dam, but this needs to be a concern, especially the discharge from toe drain from the left side seepage and C-area which is the leakage from the left support pedestal also contributes a larger discharge than other observation points.


1997 ◽  
Vol 43 (144) ◽  
pp. 207-230 ◽  
Author(s):  
Hermann Engelhardt ◽  
Barclay Kamb

AbstractPressure and tracer measurements in boreholes drilled to the bottom of Ice Stream B, West Antarctica, are used to obtain information about the basal water conduit system in which high water pressures are developed.These high pressures presumably make possible the rapid movement of the ice stream. Pressure in the system is indicated by the borehole water level once connection to the conduit system is made. On initial connection, here also called “breakthrough” to the basal water system, the water level drops in a few minutes to an initial depth in the range 96–117 m below the surface. These water levels are near but mostly somewhat deeper than the floation level of about 100 m depth (water level at which basal water pressure and ice overburden pressure are equal), which is calculated from depth-density profiles and is measured in one borehole. The conduit system can be modelled as a continuous or somewhat discontinuous gap between ice and bed; the thickness of the gap δ has to be about 2 mm to account for the water-level drop on breakthrough, and about 4 mm to fit the results of a salt-tracer experiment indicating downstream transport at a speed of 7.5 mm s−1. The above gap-conduit model is, however, ruled out by the way a pressure pulse injected into the basal water system at breakthrough propagates outward from the injection hole, and also by the large hole-to-hole variation in measured basal pressure, which if present in a gap-conduit system with δ = 2 or 4 mm would result in unacceptably large local water fluxes. An alternative model that avoids these objections, called the “gap opening” model, involves opening a gap as injection proceeds: starting with a thin film, the injection of water under pressure lifts the ice mass around the borehole, creating a gap 3 or 4mm wide at the ice/bed interface. Evaluated quantitatively, the gap-opening model accounts for the volume of water that the basal water system accepts on breakthrough, which obviates the gap-conduit model. In order to transport basal meltwater from upstream it is then necessary for the complete hydraulic model to contain also a network of relatively large conduits, of which the most promising type is the “canal” conduit proposed theoretically by Walder and Fowler (1994): flat, low conduits incised into the till, ∼0.1 m deep and perhaps ∼1 m wide, with a flat ice roof. The basal water-pressure data suggest that the canals are spaced ∼50–300 m apart, much closer than R-tunnels would be. The deepest observed water level, 117 m, is the most likely to reflect the actual water pressure in the canals, corresponding to a basal effective pressure of 1.6 bar. In this interpretation, the shallower water levels are affected by loss of hydraulic head in the narrow passageway (s) that connect along the bed from borehole to canal(s). Once a borehole has frozen up and any passageways connecting with canals have become closed, a pressure sensor in contact with the unfrozen till that underlies the ice will measure the pore pressure in the till, given enough time for pressure equilibration. This pressure varies considerably with time, over the equivalent water-level range from 100 to 113 m. Basal pressure sensors 500 m apart report uncorrelated variations, whereas sensors in boreholes 25 m араrt report mostly (but not entirely) well-correlated variations, of unknown origin. In part of the record, remarkable anticorrelated variations are interspersed with positively correlated ones, and there are rare, abrupt excursions to extreme water levels as deep as 125 m and as shallow as 74 m. A diurnal pressure fluctuation, intermittently observed, may possibly be caused by the ocean tide in the Ross Sea. The lack of any observed variation in ice-stream motion, when large percentagewise variations in basal effective pressure were occurring according to our data, suggests that the observed pressure variations are sufficiently local, and so randomly variable from place to place, that they are averaged out in the process by which the basal motion of the ice stream is determined by an integration over a large area of the bed.


1979 ◽  
Vol 23 (89) ◽  
pp. 429-430 ◽  
Author(s):  
H. Röthlisberger ◽  
A. Iken ◽  
U. Spring

Abstract A technique for drilling deep holes with a hot-water jet has been developed in recent years at our institute (Iken and others, [1977]). The holes have served to investigate the water pressure at the bed of various Swiss glaciers since 1973. Drainage occurred naturally in rare cases when the drill reached the bed, but more often it was necessary to use explosives first, probably because the drill was stopped short of the bottom of the glacier by rock inclusions in the ice. In order to record piezometric water pressure over an extended period of time it was necessary that water was draining fairly continuously into the hole, otherwise the water level dropped eventually to a great depth when the weather turned cold, whereupon the holes closed off. By suddenly shutting off the water supply to a hole and observing the lowering of the water level with time some information on the channel characteristics has been obtained. In many cases there was little change of level, indicating that such a hole gives almost the true pressure head of the subglacial drainage system. Our efforts have so far been concentrated on flat tongues of fair size over 100 m thick, the distance from the uppermost hole to the terminus ranging from about 1 to 4.5 km. The main characteristic of the water pressure is a very large diurnal variation of the order of 100 m and more. The mean pressure generally rises and falls in times of high and low water supply, respectively, but re-adjusts to approximately the original level within a few days. Mean levels are higher early in the melt season than later, and the amplitude of the diurnal variation has a tendency to increase with time, but also shows strong short-term modulations depending on the water supply. From observations on moulins and a hole which had remained connected to the bed from the previous year it seems likely that at the beginning of the melt season the water pressure at the bed may become as large as or larger than the ice pressure. On Gornergletscher a record of water pressures has been obtained during the drainage of Gornersee, an ice-dammed lake at the confluence of the two main branches of the glacier. Levels stayed high day and night in the piezometer holes, which were located off to the side of where the main drainage channel was suspected to pass through. The surface drainage pattern was affected over a large area of the glacier. These two observations indicate that during the drainage of the lake some sort of sheet flow must have occurred. The surface velocity of the glacier roughly doubled during that time, but no lifting-up of the ice was observed within the accuracy of the survey. On one occasion on Glacier de Breney the main channel must have been blocked temporarily between an upper area, where the water level was rising simultaneously in three piezometer holes, and an area further down-glacier, where the holes were not affected.


Sign in / Sign up

Export Citation Format

Share Document