scholarly journals Analysing surface energy balance closure and partitioning over a semi-arid savanna FLUXNET site in Skukuza, Kruger National Park, South Africa

Author(s):  
Nobuhle P. Majozi ◽  
Chris M. Mannaerts ◽  
Abel Ramoelo ◽  
Renaud Mathieu ◽  
Alecia Nickless ◽  
...  

Abstract. Flux tower sites and data are in great demand to provide essential terrestrial climate, water and radiation budget information needed for environmental monitoring and evaluation of climate change impacts on ecosystems and society in general. They are also intended for calibration and validation of satellite-based earth observation and monitoring efforts, such as for example assessment of evapotranspiration from land and vegetation surfaces using surface energy balance approaches. Surface energy budget methods for ET estimation rely to a large extend on the basic assumption of a surface energy balance closure, assuming the full conversion of net solar radiation reaching the land surface into soil heat conduction and turbulent fluxes, i.e. the sensible (or convection) and latent heat components of the energy balance. Evapotranspiration is the conversion of the latent heat exchange fraction of the balance. In this paper, the Skukuza flux tower data were analysed in order to verify their use for validation of satellite–based evapotranspiration methods, under development in South Africa.Data series from 2000 until 2014 were used in the analysis. The energy balance ratio (EBR) concept, defined as the ratio between the sum of the turbulent convective and latent heat fluxes and radiation minus soil heat was used. At first typical diurnal patterns of EB partitioning were derived for four different seasons, well illustrating how this savannah-type biome responses to the weather conditions. Also the particular behaviour of the EB components during sunrise and sunset conditions, being important but usually neglected periods of energy transitions and inversions were noted and analysed. Annual estimates of the surface energy balance and its components were generated, including an evaluation of the balance closure. The seasonal variations were also investigated as well as the impact of nocturnal observations on the overall EB behaviour.

2017 ◽  
Vol 21 (7) ◽  
pp. 3401-3415 ◽  
Author(s):  
Nobuhle P. Majozi ◽  
Chris M. Mannaerts ◽  
Abel Ramoelo ◽  
Renaud Mathieu ◽  
Alecia Nickless ◽  
...  

Abstract. Flux towers provide essential terrestrial climate, water, and radiation budget information needed for environmental monitoring and evaluation of climate change impacts on ecosystems and society in general. They are also intended for calibration and validation of satellite-based Earth observation and monitoring efforts, such as assessment of evapotranspiration from land and vegetation surfaces using surface energy balance approaches. In this paper, 15 years of Skukuza eddy covariance data, i.e. from 2000 to 2014, were analysed for surface energy balance closure (EBC) and partitioning. The surface energy balance closure was evaluated using the ordinary least squares regression (OLS) of turbulent energy fluxes (sensible (H) and latent heat (LE)) against available energy (net radiation (Rn) less soil heat (G)), and the energy balance ratio (EBR). Partitioning of the surface energy during the wet and dry seasons was also investigated, as well as how it is affected by atmospheric vapour pressure deficit (VPD), and net radiation. After filtering years with low-quality data (2004–2008), our results show an overall mean EBR of 0.93. Seasonal variations of EBR also showed the wet season with 1.17 and spring (1.02) being closest to unity, with the dry season (0.70) having the highest imbalance. Nocturnal surface energy closure was very low at 0.26, and this was linked to low friction velocity during night-time, with results showing an increase in closure with increase in friction velocity. The energy partition analysis showed that sensible heat flux is the dominant portion of net radiation, especially between March and October, followed by latent heat flux, and lastly the soil heat flux, and during the wet season where latent heat flux dominated sensible heat flux. An increase in net radiation was characterized by an increase in both LE and H, with LE showing a higher rate of increase than H in the wet season, and the reverse happening during the dry season. An increase in VPD is correlated with a decrease in LE and increase in H during the wet season, and an increase in both fluxes during the dry season.


2011 ◽  
Vol 5 (1) ◽  
pp. 151-171 ◽  
Author(s):  
M. Langer ◽  
S. Westermann ◽  
S. Muster ◽  
K. Piel ◽  
J. Boike

Abstract. In this article, we present a study on the surface energy balance of a polygonal tundra landscape in northeast Siberia. The study was performed during half-year periods from April to September in each of 2007 and 2008. The surface energy balance is obtained from independent measurements of the net radiation, the turbulent heat fluxes, and the ground heat flux at several sites. Short-wave radiation is the dominant factor controlling the magnitude of all the other components of the surface energy balance during the entire observation period. About 50% of the available net radiation is consumed by the latent heat flux, while the sensible and the ground heat flux are each around 20 to 30%. The ground heat flux is mainly consumed by active layer thawing. About 60% of the energy storage in the ground is attributed to the phase change of soil water. The remainder is used for soil warming down to a depth of 15 m. In particular, the controlling factors for the surface energy partitioning are snow cover, cloud cover, and the temperature gradient in the soil. The thin snow cover melts within a few days, during which the equivalent of about 20% of the snow-water evaporates or sublimates. Surface temperature differences of the heterogeneous landscape indicate spatial variabilities of sensible and latent heat fluxes, which are verified by measurements. However, spatial differences in the partitioning between sensible and latent heat flux are only measured during conditions of high radiative forcing, which only occur occasionally.


2010 ◽  
Vol 4 (3) ◽  
pp. 1391-1431 ◽  
Author(s):  
M. Langer ◽  
S. Westermann ◽  
S. Muster ◽  
K. Piel ◽  
J. Boike

Abstract. Permafrost is largely determined by the surface energy balance. Its vulnerability to degradation due to climate warming depends on complex soil-atmosphere interactions. This article is the second part of a comprehensive surface energy balance study at a polygonal tundra site in Northern Siberia. It comprises two consecutive winter periods from October 2007 to May 2008 and from October 2008 to January 2009. The surface energy balance is obtained by independent measurements of the radiation budget, the sensible heat flux and the ground heat flux, whereas the latent heat flux is inferred from measurements of the atmospheric turbulence characteristics and a model approach. The measurements reveal that the long-wave radiation is the dominant factor in the surface energy balance. The radiative losses are balanced to about 60% by the ground heat flux and almost 40% by the sensible heat fluxes, whereas the contribution of the latent heat flux is found to be relatively small. The main controlling factors of the surface energy budget are the snow cover, the cloudiness and the soil temperature gradient. Significant spatial differences in the surface energy balance are observed between the tundra soils and a small pond. The heat flux released from the subsurface heat storage is by a factor of two increased at the freezing pond during the entire winter period, whereas differences in the radiation budget are only observed at the end of winter. Inter-annual differences in the surface energy balance are related to differences in snow depth, which substantially affect the temperature evolution at the investigated pond. The obtained results demonstrate the importance of the ground heat flux for the soil-atmosphere energy exchange and reveal high spatial and temporal variabilities in the subsurface heat budget during winter.


2017 ◽  
Author(s):  
Nobuhle P. Majozi ◽  
Chris M. Mannaerts ◽  
Abel Ramoelo ◽  
Renaud Mathieu ◽  
Alecia Nickless ◽  
...  

Abstract. Flux towers provide essential terrestrial climate, water and radiation budget information needed for environmental monitoring and evaluation of climate change impacts on ecosystems and society in general. They are also intended for calibration and validation of satellite-based earth observation and monitoring efforts, such as assessment of evapotranspiration from land and vegetation surfaces using surface energy balance approaches. In this paper, 15 years of Skukuza eddy covariance data, i.e. from 2000 to 2014, were analysed for surface energy balance closure (EBC) and partitioning. The surface energy balance closure was evaluated using the ordinary least squares regression (OLS) of turbulent energy fluxes (sensible (H) and latent heat (LE)) against available energy (net radiation (Rn) less soil heat (G)), and the energy balance ratio (EBR). Partitioning of the surface energy during the wet and dry seasons was investigated, as well as how it is affected by atmospheric vapor pressure deficit (VPD), and net radiation. After filtering years with bad data (2004–2008), our results show an overall mean EBR of 0.93. Seasonal variations of EBR also showed summer (0.98) and spring (1.02) were closest to unity, with winter (0.70) having the least closure. Nocturnal surface energy closure was very low at 0.11, and this was linked to low friction velocity during night-time, with results showing an increase in closure with increase in friction velocity. The surface energy partitioning of this savanna ecosystem showed that sensible heat flux dominated the energy partitioning between March and October, followed by latent heat flux, and lastly the soil heat flux, and during the wet season where latent heat flux dominated the sensible heat flux. An increase in net radiation was characterized by an increase in both LE and H, with LE showing a higher rate of increase than H in the wet season, and the reverse happening during the dry season. An increase in VPD is characterized by a decrease in LE and increase in H during the wet season, and an increase of both fluxes during the dry season.


2015 ◽  
Vol 54 (5) ◽  
pp. 1102-1119 ◽  
Author(s):  
Kjetil Schanke Aas ◽  
Terje Koren Berntsen ◽  
Julia Boike ◽  
Bernd Etzelmüller ◽  
Jón Egill Kristjánsson ◽  
...  

AbstractThe surface energy balance at the Svalbard Archipelago has been simulated at high resolution with the Weather Research and Forecasting Model and compared with measurements of the individual energy fluxes from a tundra site near Ny-Ålesund (located north of Norway), as well as other near-surface measurements across the region. For surface air temperature, a good agreement between model and observations was found at all locations. High correlations were also found for daily averaged surface energy fluxes within the different seasons at the main site. The four radiation components showed correlations above 0.5 in all seasons (mostly above 0.9), whereas correlations between 0.3 and 0.8 were found for the sensible and latent heat fluxes. Underestimation of cloud cover and cloud optical thickness led to seasonal biases in incoming shortwave and longwave radiation of up to 30%. During summer, this was mainly a result of distinct days on which the model erroneously simulated cloud-free conditions, whereas the incoming radiation biases appeared to be more related to underestimation of cloud optical thickness during winter. The model overestimated both sensible and latent heat fluxes in most seasons. The model also initially overestimated the average Bowen ratio during summer by a factor of 6, but this bias was greatly reduced with two physically based model modifications that are related to frozen-ground hydrology. The seasonally averaged ground/snow heat flux was mostly in agreement with observations but showed too little short-time variability in the presence of thick snow. Overall, the model reproduced average temperatures well but overestimated diurnal cycles and showed considerable biases in the individual energy fluxes on seasonal and shorter time scales.


2020 ◽  
Vol 177 (2-3) ◽  
pp. 395-426 ◽  
Author(s):  
Matthias Mauder ◽  
Thomas Foken ◽  
Joan Cuxart

Abstract Quantitative knowledge of the surface energy balance is essential for the prediction of weather and climate. However, a multitude of studies from around the world indicate that the turbulent heat fluxes are generally underestimated using eddy-covariance measurements, and hence, the energy balance is not closed. This energy-balance-closure problem, which has been heavily covered in the literature for more than 25 years, is the topic of the present review, in which we provide an overview of the potential reason for the lack of closure. We demonstrate the effects of the diurnal cycle on the energy balance closure, and address questions with regard to the partitioning of the energy balance residual between the sensible and the latent fluxes, and whether the magnitude of the flux underestimation can be predicted based on other variables typically measured at micrometeorological stations. Remaining open questions are discussed and potential avenues for future research on this topic are laid out. Integrated studies, combining multi-tower experiments and scale-crossing, spatially-resolving lidar and airborne measurements with high-resolution large-eddy simulations, are considered to be of critical importance for enhancing our understanding of the underlying transport processes in the atmospheric boundary layer.


2010 ◽  
Vol 4 (3) ◽  
pp. 901-947 ◽  
Author(s):  
M. Langer ◽  
S. Westermann ◽  
S. Muster ◽  
K. Piel ◽  
J. Boike

Abstract. Permafrost thawing is essentially determined by the surface energy balance, which potentially triggers the activation of a massive carbon source, if previously frozen organic soils are exposed to microbial decomposition. In this article, we present the first part of a comprehensive annual surface energy balance study performed at a polygonal tundra landscape in northeast Siberia, realized between spring 2007 and winter 2009. This part of the study focuses on the half year period from April to September 2007–2008, during which the surface energy balance is obtained from independent measurements of the radiation budget, the turbulent heat fluxes and the ground heat flux at several sites. The short-wave radiation is the dominant factor in the surface energy balance during the entire observation period. About 50% of the available net radiation is consumed by latent heat flux, while the sensible and the ground heat flux are both on the order of 20 to 30%. The ground heat flux is mainly consumed by active layer thawing, where 60% of soil energy storage are attributed to. The remainder is used for soil warming down to a depth of 15 m. The controlling factors for the surface energy partitioning are in particular the snow cover, the cloud cover and the soil temperature gradient. Significant surface temperature differences of the heterogeneous landscape indicate spatial variabilities of sensible and latent heat fluxes, which are verified by measurements at different locations. However, differences in the partition between sensible and latent heat flux for the different sites only exist during conditions of high radiative forcing, which only occur occasionally.


2021 ◽  
Author(s):  
Matthias Mauder

<p>Quantitative knowledge of the surface energy balance is essential for the prediction of weather and climate. However, a multitude of studies from around the world indicates that the turbulent heat fluxes are generally underestimated using eddy-covariance measurements, and hence, the surface energy balance is not closed. This energy balance closure problem has been heavily covered in the literature for more than 25 years, and as a result, several instrumental and methodological aspects have been reconsidered and partially revised. Nevertheless, a non-negligible energy imbalance remains, and we demonstrate that a major portion of this imbalance can be explained by dispersive fluxes in the surface layer, which are associated with submesoscale secondary circulations. Such large-scale organized structures are a very common phenomenon in the convective boundary layer, and depending on static stability, they can either be roll-like or cell-like and occur even over homogeneous surfaces. Over heterogeneous surfaces, thermally-induced mesoscale circulations can occur in addition to those. Either way, the associated dispersive heat fluxes can inherently not be captured by single-tower measurements, since the ergodicity assumption is violated. As a consequence, energy transported non-turbulently will not be sensed by eddy-covariance systems and a bias towards lower energy fluxes will result. The objective of this research is to develop a model that can be used to correct single-tower eddy-covariance data. As a first step towards this goal, we will present a parametrisation for dispersive fluxes, which was developed based on an idealized high-resolution LES study for homogeneous surfaces, as a function of non-local scaling variables. Secondly, we explore how well this parametrisation works for a number of real-world eddy-covariance sites.</p>


Sign in / Sign up

Export Citation Format

Share Document