scholarly journals Assessment of a multi-resolution snow reanalysis framework: a multi-decadal reanalysis case over the Upper Yampa River Basin, Colorado

2017 ◽  
Author(s):  
Elisabeth Baldo ◽  
Steven A. Margulis

Abstract. A multi-resolution (MR) approach was successfully implemented in the context of a data assimilation (DA) framework to efficiently estimate snow water equivalent (SWE) over a large headwater catchment in the Colorado River Basin (CRB), while decreasing computational constraints by 60 %. Thirty-one years of fractional snow cover area (fSCA) images derived from Landsat TM, ETM+ and OLI sensors measurements were assimilated to generate two SWE reanalysis datasets, a baseline case at a uniform 90 m spatial resolution and another using the MR approach. A comparison of the two showed negligible differences in terms of snow accumulation, melt and timing for the posterior estimates (in terms of both ensemble median and standard deviation). The MR approach underestimated the baseline peak SWE by less than 2 %, and day of peak and duration of the accumulation season by a day on average. The largest differences were, by construct, limited primarily to areas of low complexity, where shallow snowpacks tend to exist. The MR approach should allow for more computationally efficient implementations of snow data assimilation applications over large-scale mountain ranges with accuracies similar to those that would be obtained using ~ 100 m simulations. Such uniform resolution applications are generally infeasible due to the computationally expensive nature of ensemble-based DA frameworks.

2018 ◽  
Vol 22 (7) ◽  
pp. 3575-3587 ◽  
Author(s):  
Elisabeth Baldo ◽  
Steven A. Margulis

Abstract. A multiresolution (MR) approach was successfully implemented in the context of a data assimilation (DA) framework to efficiently estimate snow water equivalent (SWE) over a large head water catchment in the Colorado River basin (CRB), while decreasing computational constraints by 60 %. A total of 31 years of fractional snow cover area (fSCA) images derived from Landsat TM, ETM+, and OLI sensor measurements were assimilated to generate two SWE reanalysis datasets, a baseline case at a uniform 90 m spatial resolution and another using the MR approach. A comparison of the two showed negligible differences in terms of snow accumulation, melt, and timing for the posterior estimates (in terms of both ensemble median and coefficient of variation). The MR approach underestimated the baseline peak SWE by less than 2 % and underestimated day of peak and duration of the accumulation season by a day on average. The largest differences were, by construct, limited primarily to areas of low complexity, where shallow snowpacks tend to exist. The MR approach should allow for more computationally efficient implementations of snow data assimilation applications over large-scale mountain ranges, with accuracies similar to those that would be obtained using ∼ 100 m simulations. Such uniform resolution applications are generally infeasible due to the computationally expensive nature of ensemble-based DA frameworks.


2021 ◽  
Vol 11 (18) ◽  
pp. 8365
Author(s):  
Liming Gao ◽  
Lele Zhang ◽  
Yongping Shen ◽  
Yaonan Zhang ◽  
Minghao Ai ◽  
...  

Accurate simulation of snow cover process is of great significance to the study of climate change and the water cycle. In our study, the China Meteorological Forcing Dataset (CMFD) and ERA-Interim were used as driving data to simulate the dynamic changes in snow depth and snow water equivalent (SWE) in the Irtysh River Basin from 2000 to 2018 using the Noah-MP land surface model, and the simulation results were compared with the gridded dataset of snow depth at Chinese meteorological stations (GDSD), the long-term series of daily snow depth dataset in China (LSD), and China’s daily snow depth and snow water equivalent products (CSS). Before the simulation, we compared the combinations of four parameterizations schemes of Noah-MP model at the Kuwei site. The results show that the rainfall and snowfall (SNF) scheme mainly affects the snow accumulation process, while the surface layer drag coefficient (SFC), snow/soil temperature time (STC), and snow surface albedo (ALB) schemes mainly affect the melting process. The effect of STC on the simulation results was much higher than the other three schemes; when STC uses a fully implicit scheme, the error of simulated snow depth and snow water equivalent is much greater than that of a semi-implicit scheme. At the basin scale, the accuracy of snow depth modeled by using CMFD and ERA-Interim is higher than LSD and CSS snow depth based on microwave remote sensing. In years with high snow cover, LSD and CSS snow depth data are seriously underestimated. According to the results of model simulation, it is concluded that the snow depth and snow water equivalent in the north of the basin are higher than those in the south. The average snow depth, snow water equivalent, snow days, and the start time of snow accumulation (STSA) in the basin did not change significantly during the study period, but the end time of snow melting was significantly advanced.


2012 ◽  
Vol 6 (6) ◽  
pp. 4637-4671
Author(s):  
K. Klehmet ◽  
B. Geyer ◽  
B. Rockel

Abstract. This study analyzes the added value of a regional climate model hindcast of CCLM compared to global reanalyses in providing a reconstruction of recent past snow water equivalent (SWE) for Siberia. Consistent regional climate data in time and space is necessary due to lack of station data in that region. We focus on SWE since it represents an important snow cover parameter in a region where snow has the potential to feed back to the climate of the whole Northern Hemisphere. The simulation was performed in a 50 km grid spacing for the period 1948 to 2010 using NCEP Reanalysis 1 as boundary forcing. Daily observational reference data for the period of 1987–2010 was obtained by the satellite derived SWE product of ESA DUE GlobSnow that enables a large scale assessment. The analyses includes comparisons of the distribution of snow cover extent, example time series of monthly SWE for January and April, regional characteristics of long-term monthly mean, standard deviation and temporal correlation averaged over subregions. SWE of CCLM is compared against the SWE information of NCEP-R1 itself and three more reanalyses (NCEP-R2, NCEP-CFSR, ERA-Interim). We demonstrate a significant added value of the CCLM hindcast during snow accumulation period shown for January for many subregions compared to SWE of NCEP-R1. NCEP-R1 mostly underestimates SWE during whole snow season. CCLM overestimates SWE compared to the satellite-derived product during April – a month representing the beginning of snow melt in southern regions. We illustrate that SWE of the regional hindcast is more consistent in time than ERA-Interim and NCEP-R2 and thus add realistic detail.


Geografie ◽  
2014 ◽  
Vol 119 (2) ◽  
pp. 145-160
Author(s):  
Libor Ducháček

Knowledge of the volume of water retained in mountainous areas serves as an important source of information for the anticipation of spring floods, as well as for other purposes, such as those related to agricultural management. Similarly, the extent and distribution of snow coverage (snow cover area – SCA) in lowlands are factors influencing the threat of large-scale floods caused by the melting of even a thin layer of snow cover. Every week during the winter months, the Czech Hydrometeorological Institute (CHMI) provides up to date information on the snow water equivalent present in Czech regions and especially within important hydrological basins. This information comes predominantly from an observation of net and field measurements. The position of the zero isohione, determined through remote sensing, helps to increase the accuracy of the calculations of such spatial distribution in Czechia. As a consequence of this practical use, changes in the accumulation and distribution of snow cover can be readily observed via remote senzing. This is further made easier by Czechia’s orographic disposition, specifically its interconnected system of border mountains and a central highland. As a result, the position of the zero isohione can be determined with an accuracy of 50 m a.s.l. If we compare selected geomorphological regions, we can find statistically substantiated differences in the position of the zero isohione of more than 200 m.


2017 ◽  
Vol 18 (6) ◽  
pp. 1707-1713 ◽  
Author(s):  
Yixin Wen ◽  
Pierre Kirstetter ◽  
J. J. Gourley ◽  
Yang Hong ◽  
Ali Behrangi ◽  
...  

Abstract Snow is important to water resources and is of critical importance to society. Ground-weather-radar-based snowfall observations have been highly desirable for large-scale weather monitoring and water resources applications. This study conducts an evaluation of the Multi-Radar Multi-Sensor (MRMS) quantitative estimates of snow rate using the Snowpack Telemetry (SNOTEL) daily snow water equivalent (SWE) datasets. A detectability evaluation shows that MRMS is limited in detecting very light snow (daily snow accumulation <5 mm) because of the quality control module in MRMS filtering out weak signals (<5 dBZ). For daily snow accumulation greater than 10 mm, MRMS has good detectability. The quantitative comparisons reveal a bias of −77.37% between MRMS and SNOTEL. A majority of the underestimation bias occurs in relatively warm conditions with surface temperatures ranging from −10° to 0°C. A constant reflectivity–SWE intensity relationship does not capture the snow mass flux increase associated with denser snow particles at these relatively warm temperatures. There is no clear dependence of the bias on radar beam height. The findings in this study indicate that further improvement in radar snowfall products might occur by deriving appropriate reflectivity–SWE relationships considering the degree of riming and snowflake size.


2013 ◽  
Vol 10 (3) ◽  
pp. 3629-3664
Author(s):  
G. A. Artan ◽  
J. P. Verdin ◽  
R. Lietzow

Abstract. We illustrate the ability to monitor the status of snowpack over large areas by using a~spatially distributed snow accumulation and ablation model in the Upper Colorado Basin. The model was forced with precipitation fields from the National Weather Service (NWS) Multi-sensor Precipitation Estimator (MPE) and the Tropical Rainfall Measuring Mission (TRMM) datasets; remaining meteorological model input data was from NOAA's Global Forecast System (GFS) model output fields. The simulated snow water equivalent (SWE) was compared to SWEs from the Snow Data Assimilation System (SNODAS) and SNOwpack TELemetry system (SNOTEL) over a~region of the Western United States that covers parts of the Upper Colorado Basin. We also compared the SWE product estimated from the Special Sensor Microwave Imager (SSM/I) and Scanning Multichannel Microwave Radiometer (SMMR) to the SNODAS and SNOTEL SWE datasets. Agreement between the spatial distribution of the simulated SWE with both SNODAS and SNOTEL was high for the two model runs for the entire snow accumulation period. Model-simulated SWEs, both with MPE and TRMM, were significantly correlated spatially on average with the SNODAS (r = 0.81 and r = 0.54; d.f. = 543) and the SNOTEL SWE (r = 0.85 and r = 0.55; d.f. = 543), when monthly basinwide simulated average SWE the correlation was also highly significant (r = 0.95 and r = 0.73; d.f. = 12). The SWE estimated from the passive microwave imagery was not correlated either with the SNODAS SWE or (r = 0.14, d.f. = 7) SNOTEL-reported SWE values (r = 0.08, d.f. = 7). The agreement between modeled SWE and the SWE recorded by SNODAS and SNOTEL weakened during the snowmelt period due to an underestimation bias of the air temperature that was used as model input forcing.


1996 ◽  
Vol 27 (5) ◽  
pp. 313-322 ◽  
Author(s):  
Chi-Hai Ling ◽  
Edward G. Josberger ◽  
A.S. Thorndike

In the mountainous regions of the Upper Colorado River Basin, snow course observations give local measurements of snow water equivalent, which can be used to estimate regional averages of snow conditions. We develop a statistical technique to estimate the mesoscale average snow accumulation, using 8 years of snow course observations. For each of three major snow accumulation regions in the Upper Colorado River Basin – the Colorado Rocky Mountains, Colorado, the Uinta Mountains, Utah, and the Wind River Range, Wyoming – the snow course observations yield a correlation length scale of 38 km, 46 km, and 116 km respectively. This is the scale for which the snow course data at different sites are correlated with 70 per cent correlation. This correlation of snow accumulation over large distances allows for the estimation of the snow water equivalent on a mesoscale basis. With the snow course data binned into 1/4° latitude by 1/4° longitude pixels, an error analysis shows the following: for no snow course data in a given pixel, the uncertainty in the water equivalent estimate reaches 50 cm; that is, the climatological variability. However, as the number of snow courses in a pixel increases the uncertainty decreases, and approaches 5-10 cm when there are five snow courses in a pixel.


2020 ◽  
Vol 163 ◽  
pp. 01011
Author(s):  
Andrey Shikhov ◽  
Evgenii Churiulin

More recently, snow accumulation and snowmelt models for their calculations are forced to apply data from numerical weather prediction (NWP) models. This approach allows improvement the accuracy of calculating snow water equivalent (SWE) values especially in remote and mountain regions. In this study, we compared the numerical results of SWE calculations performed by two independent models. The first one is the SnoWE model and the second one is the ICON NWP model. During the period from November 2018 to May 2019, the simulation results of SWE compared with in-situ data from 64 snow surveys, which are located in the Kama river basin. We found that both models (SnoWE and ICON) allow getting satisfactory estimates of the maximum values of SWE (the accuracy of data is sufficient for their practical using). The root mean square error was equal 14-18% from the average measured SWE. Moreover, we got reliable maximum values of SWE for forested areas. At the same time, both models underestimate SWE values during spring snowmelt season. Probably, this underestimation is due to the shortcomings of the models and a sparse snow course-measuring network.


Geografie ◽  
2012 ◽  
Vol 117 (1) ◽  
pp. 110-125 ◽  
Author(s):  
Lucie Kutláková ◽  
Michal Jeníček

Effectively dealing with spring flooding issues should focus primarily on their causes. It is therefore important to study the processes of snow accumulation and snowmelt, especially in mountain areas. In this article, we use the lumped modelling approach of the rainfall-runoff model HEC-HMS, along with the temperature-index method for snow accumulation and snowmelt computation. Three winter periods were used for model calibration and testing: 2005/06, 2007/08 and 2008/09. Developments in the snow-water equivalent were simulated and the accuracy of simulated hydrographs was assessed, against actual observations, in the Ostrov outlet in the Bystřice River basin in the Krušné Hory Mountains. The published results present fundamental uncertainties in winter flood modelling and demonstrate the influence of the course and character of a given winter on the model’s capability to simulate the snow water equivalent and runoff.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 363
Author(s):  
George Duffy ◽  
Fraser King ◽  
Ralf Bennartz ◽  
Christopher G. Fletcher

CloudSat is often the only measurement of snowfall rate available at high latitudes, making it a valuable tool for understanding snow climatology. The capability of CloudSat to provide information on seasonal and subseasonal time scales, however, has yet to be explored. In this study, we use subsampled reanalysis estimates to predict the uncertainties of CloudSat snow water equivalent (SWE) accumulation measurements at various space and time resolutions. An idealized/simulated subsampling model predicts that CloudSat may provide seasonal SWE estimates with median percent errors below 50% at spatial scales as small as 2° × 2°. By converting these predictions to percent differences, we can evaluate CloudSat snowfall accumulations against a blend of gridded SWE measurements during frozen time periods. Our predictions are in good agreement with results. The 25th, 50th, and 75th percentiles of the percent differences between the two measurements all match predicted values within eight percentage points. We interpret these results to suggest that CloudSat snowfall estimates are in sufficient agreement with other, thoroughly vetted, gridded SWE products. This implies that CloudSat may provide useful estimates of snow accumulation over remote regions within seasonal time scales.


Sign in / Sign up

Export Citation Format

Share Document