scholarly journals Identification of runoff formation with two dyes in a mid-latitude mountain headwater

2017 ◽  
Author(s):  
Lukáš Vlček ◽  
Philipp Schneider ◽  
Kristýna Falátková

Abstract. Subsurface flow in Peat Bog areas and its role in the hydrological cycle has garnered increased attention as water scarcity and floods have increased due to a changing climate. In order to further probe the mechanisms in Peat Bog areas and contextualize them at the catchment scale, this experimental study identifies runoff formation at two opposite hillslopes in a peaty mountain headwater; a slope with organic Peat soils and a shallow phreatic zone (0.5 m below surface) and a slope with mineral Podzol soils and no detectable groundwater (> 2 m below surface). Similarities and differences in infiltration, percolation, and preferential flowpaths between both hillslopes could be identified by sprinkling experiments with Brilliant Blue and Sodium-Fluorescein. To our knowledge, this is the first time these two dyes have been compared in their ability to stain preferential flowpaths in soils. Dye-stained soil profiles within and downstream of the sprinkling areas were excavated parallel (lateral profiles) and perpendicular (frontal profiles) to the slopes' gradients. That way preferential flow patterns in the soil could be clearly identified. The results show that biomat flow, shallow subsurface flow in the organic topsoil layer, occurred at both hillslopes, however at the Peat Bog hillslope it was significantly more prominent. The dye solutions infiltrated into the soil and continued either as lateral subsurface pipeflow in the case of the Peat Bog, or percolated vertically towards the bedrock in the case of the Podzol. This study provides evidence that subsurface pipeflow, lateral preferential flow along decomposed tree roots or logs in the unsaturated zone, is a major runoff formation process at the Peat Bog hillslope and in the adjacent riparian zone.

2017 ◽  
Vol 21 (6) ◽  
pp. 3025-3040 ◽  
Author(s):  
Lukáš Vlček ◽  
Kristýna Falátková ◽  
Philipp Schneider

Abstract. Subsurface flow in peat bog areas and its role in the hydrologic cycle has garnered increased attention as water scarcity and floods have increased due to a changing climate. In order to further probe the mechanisms in peat bog areas and contextualize them at the catchment scale, this experimental study identifies runoff formation at two opposite hillslopes in a peaty mountain headwater; a slope with organic peat soils and a shallow phreatic zone (0.5 m below surface), and a slope with mineral Podzol soils and no detectable groundwater (> 2 m below surface). Similarities and differences in infiltration, percolation and preferential flow paths between both hillslopes could be identified by sprinkling experiments with Brilliant Blue and Fluorescein sodium. To our knowledge, this is the first time these two dyes have been compared in their ability to stain preferential flow paths in soils. Dye-stained soil profiles within and downstream of the sprinkling areas were excavated parallel (lateral profiles) and perpendicular (frontal profiles) to the slopes' gradients. That way preferential flow patterns in the soil could be clearly identified. The results show that biomat flow, shallow subsurface flow in the organic topsoil layer, occurred at both hillslopes; however, at the peat bog hillslope it was significantly more prominent. The dye solutions infiltrated into the soil and continued either as lateral subsurface pipe flow in the case of the peat bog, or percolated vertically towards the bedrock in the case of the Podzol. This study provides evidence that subsurface pipe flow, lateral preferential flow along decomposed tree roots or logs in the unsaturated zone, is a major runoff formation process at the peat bog hillslope and in the adjacent riparian zone.


2017 ◽  
Vol 21 (7) ◽  
pp. 3727-3748 ◽  
Author(s):  
Lisa Angermann ◽  
Conrad Jackisch ◽  
Niklas Allroggen ◽  
Matthias Sprenger ◽  
Erwin Zehe ◽  
...  

Abstract. The phrase form and function was established in architecture and biology and refers to the idea that form and functionality are closely correlated, influence each other, and co-evolve. We suggest transferring this idea to hydrological systems to separate and analyze their two main characteristics: their form, which is equivalent to the spatial structure and static properties, and their function, equivalent to internal responses and hydrological behavior. While this approach is not particularly new to hydrological field research, we want to employ this concept to explicitly pursue the question of what information is most advantageous to understand a hydrological system. We applied this concept to subsurface flow within a hillslope, with a methodological focus on function: we conducted observations during a natural storm event and followed this with a hillslope-scale irrigation experiment. The results are used to infer hydrological processes of the monitored system. Based on these findings, the explanatory power and conclusiveness of the data are discussed. The measurements included basic hydrological monitoring methods, like piezometers, soil moisture, and discharge measurements. These were accompanied by isotope sampling and a novel application of 2-D time-lapse GPR (ground-penetrating radar). The main finding regarding the processes in the hillslope was that preferential flow paths were established quickly, despite unsaturated conditions. These flow paths also caused a detectable signal in the catchment response following a natural rainfall event, showing that these processes are relevant also at the catchment scale. Thus, we conclude that response observations (dynamics and patterns, i.e., indicators of function) were well suited to describing processes at the observational scale. Especially the use of 2-D time-lapse GPR measurements, providing detailed subsurface response patterns, as well as the combination of stream-centered and hillslope-centered approaches, allowed us to link processes and put them in a larger context. Transfer to other scales beyond observational scale and generalizations, however, rely on the knowledge of structures (form) and remain speculative. The complementary approach with a methodological focus on form (i.e., structure exploration) is presented and discussed in the companion paper by Jackisch et al.(2017).


2009 ◽  
Vol 45 (11) ◽  
Author(s):  
A. E. Anderson ◽  
M. Weiler ◽  
Y. Alila ◽  
R. O. Hudson

2013 ◽  
Vol 68 (10) ◽  
pp. 2164-2170 ◽  
Author(s):  
Nora Sillanpää ◽  
Harri Koivusalo

Despite the crucial role of snow in the hydrological cycle in cold climate conditions, monitoring studies of urban snow quality often lack discussions about the relevance of snow in the catchment-scale runoff management. In this study, measurements of snow quality were conducted at two residential catchments in Espoo, Finland, simultaneously with continuous runoff measurements. The results of the snow quality were used to produce catchment-scale estimates of areal snow mass loads (SML). Based on the results, urbanization reduced areal snow water equivalent but increased pollutant accumulation in snow: SMLs in a medium-density residential catchment were two- to four-fold higher in comparison with a low-density residential catchment. The main sources of pollutants were related to vehicular traffic and road maintenance, but also pet excrement increased concentrations to a high level. Ploughed snow can contain 50% of the areal pollutant mass stored in snow despite its small surface area within a catchment.


2012 ◽  
Vol 16 (3) ◽  
pp. 649-669 ◽  
Author(s):  
G. H. de Rooij

Abstract. The increasing importance of catchment-scale and basin-scale models of the hydrological cycle makes it desirable to have a simple, yet physically realistic model for lateral subsurface water flow. As a first building block towards such a model, analytical solutions are presented for horizontal groundwater flow to surface waters held at prescribed water levels for aquifers with parallel and radial flow. The solutions are valid for a wide array of initial and boundary conditions and additions or withdrawals of water, and can handle discharge into as well as lateral infiltration from the surface water. Expressions for the average hydraulic head, the flux to or from the surface water, and the aquifer-scale hydraulic conductivity are developed to provide output at the scale of the modelled system rather than just point-scale values. The upscaled conductivity is time-variant. It does not depend on the magnitude of the flux but is determined by medium properties as well as the external forcings that drive the flow. For the systems studied, with lateral travel distances not exceeding 10 m, the circular aquifers respond very differently from the infinite-strip aquifers. The modelled fluxes are sensitive to the magnitude of the storage coefficient. For phreatic aquifers a value of 0.2 is argued to be representative, but considerable variations are likely. The effect of varying distributions over the day of recharge damps out rapidly; a soil water model that can provide accurate daily totals is preferable over a less accurate model hat correctly estimates the timing of recharge peaks.


2013 ◽  
Vol 44 (6) ◽  
pp. 995-1012 ◽  
Author(s):  
Rajesh R. Shrestha ◽  
Karsten Osenbrück ◽  
Michael Rode

This study uses a high-frequency discharge and nitrate concentration dataset from the Weida catchment in Germany for the catchment scale hydrologic response analysis. Nitrate transport in the catchment is mostly conservative as indicated by the nitrate stable isotope (δ15N and δ18O) analysis. Discharge–nitrate concentration data from the catchment show distinctive patterns, suggesting flushing and dilution response. A self-organizing feature map-based methodology was employed to identify such patterns or cluster in the datasets. Based on knowledge of the catchment conditions and prevailing understanding of discharge–nitrate concentration relationship, the clusters were characterized into five qualitative flow responses: (1) baseflow; (2) subsurface flow increase; (3) surface runoff increase; (4) surface runoff recession; and (5) subsurface flow decrease. Such qualitative flowpaths were used as soft data for a multi-objective calibration of a hydrological model (WaSiM-ETH). The calibration led to a reasonable simulation of overall discharge (Nash–Sutcliffe coefficient: 0.84) and qualitative flowpaths (76% agreement). A prerequisite for using such methodology is limited biogeochemical transformation of nitrate (such as denitrification).


2021 ◽  
Author(s):  
Ondrej Hotovy ◽  
Michal Jenicek

<p>Seasonal snowpack significantly influences the catchment runoff and thus represents an important input for the hydrological cycle. Changes in the precipitation distribution and intensity, as well as a shift from snowfall to rain is expected in the future due to climate changes. As a result, rain-on-snow events, which are considered to be one of the main causes of floods in winter and spring, may occur more frequently. Heat from liquid precipitation constitutes one of the snowpack energy balance components. Consequently, snowmelt and runoff may be strongly affected by these temperature and precipitation changes.</p><p>The objective of this study is 1) to evaluate the frequency, inter-annual variability and extremity of rain-on-snow events in the past based on existing measurements together with an analysis of changes in the snowpack energy balance, and 2) to simulate the effect of predicted increase in air temperature on the occurrence of rain-on-snow events in the future. We selected 40 near-natural mountain catchments in Czechia with significant snow influence on runoff and with available long-time series (>35 years) of daily hydrological and meteorological variables. A semi-distributed conceptual model, HBV-light, was used to simulate the individual components of the water cycle at a catchment scale. The model was calibrated for each of study catchments by using 100 calibration trials which resulted in respective number of optimized parameter sets. The model performance was evaluated against observed runoff and snow water equivalent. Rain-on-snow events definition by threshold values for air temperature, snow depth, rain intensity and snow water equivalent decrease allowed us to analyze inter-annual variations and trends in rain-on-snow events during the study period 1965-2019 and to explain the role of different catchment attributes.</p><p>The preliminary results show that a significant change of rain-on-snow events related to increasing air temperature is not clearly evident. Since both air temperature and elevation seem to be an important rain-on-snow drivers, there is an increasing rain-on-snow events occurrence during winter season due to a decrease in snowfall fraction. In contrast, a decrease in total number of events was observed due to the shortening of the period with existing snow cover on the ground. Modelling approach also opened further questions related to model structure and parameterization, specifically how individual model procedures and parameters represent the real natural processes. To understand potential model artefacts might be important when using HBV or similar bucket-type models for impact studies, such as modelling the impact of climate change on catchment runoff.</p>


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1350
Author(s):  
Yandong Ma ◽  
Jingbo Zhao ◽  
Tianjie Shao ◽  
Zhifeng Jia ◽  
Zhiqiang Zhao ◽  
...  

The hydrologic process of the sandy desert remains a focus in research in arid areas. Three major natural phenomena that can indicate the hydrological cycle in the extremely dry Badain Jaran Desert were found, namely the assemblage of megadune microrelief and evaporite, megadune vegetation and microrelief, as well as lakeside runoff and vegetation. The microrelief sand layer water, evaporite minerals, and lakeside hydrogeological features were analyzed by the drying and weighing method, environmental scanning electron microscopy with energy spectrum analysis functions, and a hydrogeological borehole survey. The water content of the microrelief 0–0.5 m sand layer is between 4.7% and 9.3%. The evaporite minerals are mainly composed of calcite (CaCO3) and gypsum (CaSO4). The shallow groundwater system in the off-shore area of lakes consists of an aeolian sand layer, a peat layer, and a lacustrine sedimentary layer, and the phreatic water with a thickness of 20 cm to 40 cm is reserved in the bottom of aeolian sand layer with a peat layer as a waterproof baseboard. Based on these results, the above three natural phenomena can be explained as follows: (1) The assemblage of megadune microrelief and evaporite was caused by the outcropping of water from megadune vadose zone in the form of preferential flow for a long time. Its leading edge differential wind erosion and calcium cemented fine sand layer indicate that water from the megadune vadose zone moves to and recharges the microrelief water along the micro-scale fine sand layer, during which, it features a multiple layer as it is controlled by a vertical dune bedding structure. (2) The small-scale assemblage of megadune vegetation and microrelief indicates that the water from the megadune vadose zone moved laterally and led to vegetation development, and the assemblage of microrelief and vegetation at a slope scale indicates that the vadose zone water presented multilayer enrichment and runoff producing due, to a great extent, to the bedding structures of different spacial locations. (3) The assemblage of lakeside runoff and vegetation is related to the phreatic water recharged by precipitation surrounding the lake, which indicates that the megadune water recharged by precipitation moved to the bottom of the megadune and constituted supply to the lake water. The three assemblages fully demonstrate that the megadune water recharged by precipitation in this desert could recharge the groundwater water and even lake water in the form of preferential flow due to the control of the bedding structure of different scales within the megadune. The results of lake water balance and the occurrence conditions of phreatic water surrounding the lake imply that the precipitation in this desert plays an important role in sustaining the lake. This study provides reliable evidence for revealing the essence of the hydrological cycle and the source of lake water in the Badain Jaran Desert, which indicates that although precipitation is small, it cannot be ignored in arid sandy desert areas.


2017 ◽  
Vol 21 (1) ◽  
pp. 459-471 ◽  
Author(s):  
Mostaquimur Rahman ◽  
Rafael Rosolem

Abstract. Modelling and monitoring of hydrological processes in the unsaturated zone of chalk, a porous medium with fractures, is important to optimize water resource assessment and management practices in the United Kingdom (UK). However, incorporating the processes governing water movement through a chalk unsaturated zone in a numerical model is complicated mainly due to the fractured nature of chalk that creates high-velocity preferential flow paths in the subsurface. In general, flow through a chalk unsaturated zone is simulated using the dual-porosity concept, which often involves calibration of a relatively large number of model parameters, potentially undermining applications to large regions. In this study, a simplified parameterization, namely the Bulk Conductivity (BC) model, is proposed for simulating hydrology in a chalk unsaturated zone. This new parameterization introduces only two additional parameters (namely the macroporosity factor and the soil wetness threshold parameter for fracture flow activation) and uses the saturated hydraulic conductivity from the chalk matrix. The BC model is implemented in the Joint UK Land Environment Simulator (JULES) and applied to a study area encompassing the Kennet catchment in the southern UK. This parameterization is further calibrated at the point scale using soil moisture profile observations. The performance of the calibrated BC model in JULES is assessed and compared against the performance of both the default JULES parameterization and the uncalibrated version of the BC model implemented in JULES. Finally, the model performance at the catchment scale is evaluated against independent data sets (e.g. runoff and latent heat flux). The results demonstrate that the inclusion of the BC model in JULES improves simulated land surface mass and energy fluxes over the chalk-dominated Kennet catchment. Therefore, the simple approach described in this study may be used to incorporate the flow processes through a chalk unsaturated zone in large-scale land surface modelling applications.


2015 ◽  
Vol 19 (5) ◽  
pp. 2197-2212 ◽  
Author(s):  
W. Shao ◽  
T. A. Bogaard ◽  
M. Bakker ◽  
R. Greco

Abstract. The effect of preferential flow on the stability of landslides is studied through numerical simulation of two types of rainfall events on a hypothetical hillslope. A model is developed that consists of two parts. The first part is a model for combined saturated/unsaturated subsurface flow and is used to compute the spatial and temporal water pressure response to rainfall. Preferential flow is simulated with a dual-permeability continuum model consisting of a matrix domain coupled to a preferential flow domain. The second part is a soil mechanics model and is used to compute the spatial and temporal distribution of the local factor of safety based on the water pressure distribution computed with the subsurface flow model. Two types of rainfall events were considered: long-duration, low-intensity rainfall, and short-duration, high-intensity rainfall. The effect of preferential flow on slope stability is assessed through comparison of the failure area when subsurface flow is simulated with the dual-permeability model as compared to a single-permeability model (no preferential flow). For the low-intensity rainfall case, preferential flow has a positive effect on drainage of the hillslope resulting in a smaller failure area. For the high-intensity rainfall case, preferential flow has a negative effect on the slope stability as the majority of rainfall infiltrates into the preferential flow domain when rainfall intensity exceeds the infiltration capacity of the matrix domain, resulting in larger water pressure and a larger failure area.


Sign in / Sign up

Export Citation Format

Share Document