scholarly journals Observed and modeled diurnal variations around Lake Malawi

2019 ◽  
Author(s):  
Shunya Koseki ◽  
Priscilla A. Mooney

Abstract. We investigate how the intensity and spatial distribution of precipitation varies around Lake Malawi on a diurnal time scale, which can be valuable information for water resource management in tropical southeastern African nations. Using a state-of-the-art satellite product and regional atmospheric model, the well-defined diurnal cycle is detected around Lake Malawi with harmonic and principle component analyses: the precipitation is intense during midnight to morning over Lake Malawi and the precipitation peaks in the daytime over the surrounding area. This diurnal cycle in the precipitation around the lake is associated with the lake-land breeze circulation. Comparisons between the benchmark simulation and an idealized simulation in which Lake Malawi is removed, reveals that the diurnal variations in the precipitation are substantially amplified by the presence of Lake Malawi. This is most evident over the lake and relatively surrounding coastal regions. Lake Malawi also enhances the lake-land breeze circulation; the nocturnal lakeward land breeze generates the surface convergence effectively and the precipitation intensifies over the lake. Conversely, the daytime landward lake breeze generates the intense divergence over the lake and the precipitation is strongly depressed over the lake. The lake surface helps to create the thermal contrast between the lake and land and consequently the local lake-land breeze system is maintained via sensible heat flux. The lake-land breeze and the background water vapour enriched by Lake Malawi drives dominantly a diurnal variation in the surface moisture flux divergence/convergence over the lake and surrounding area and consequently, contributes to the diurnal cycle of the precipitation.

2019 ◽  
Vol 23 (7) ◽  
pp. 2795-2812 ◽  
Author(s):  
Shunya Koseki ◽  
Priscilla A. Mooney

Abstract. We investigate how the intensity and spatial distribution of precipitation vary around Lake Malawi on a diurnal timescale, which can be valuable information for water resource management in tropical south-eastern African nations. Using a state-of-the-art satellite product and regional atmospheric model, the well-defined diurnal cycle is detected around Lake Malawi with harmonic and principle component analyses: the precipitation is intense during midnight to morning over Lake Malawi and the precipitation peaks in the daytime over the surrounding area. This diurnal cycle in the precipitation around the lake is associated with the lake–land breeze circulation. Comparisons between the benchmark simulation and an idealized simulation in which Lake Malawi is removed reveal that the diurnal variations in precipitation are substantially amplified by the presence of Lake Malawi. This is most evident over the lake and surrounding coastal regions. Lake Malawi also enhances the lake–land breeze circulation; the nocturnal lakeward land breeze generates surface convergence effectively and precipitation intensifies over the lake. Conversely, the daytime landward lake breeze generates the intense divergence over the lake and precipitation is strongly depressed over the lake. The lake–land breeze and the background vapour enriched by Lake Malawi drive primarily a diurnal variation in the surface moisture flux divergence/convergence over the lake and surrounding area which contributes to the diurnal cycle of precipitation in this region.


2013 ◽  
Vol 26 (13) ◽  
pp. 4858-4875 ◽  
Author(s):  
Hironari Kanamori ◽  
Tetsuzo Yasunari ◽  
Koichiro Kuraji

Abstract This study investigates spatiotemporal characteristics of the diurnal cycle (DC) of rainfall over Sarawak in northwest Borneo Island, associated with large-scale intraseasonal disturbances represented by the Madden–Julian oscillation (MJO). This is accomplished using a dense hourly rain gauge network and satellite data. The spatial pattern of the DC is classified into two major groups, coastal and interior regions, based on remarkable differences in rainfall peak times and amplitudes. Amplitudes of the DC and daily rainfall amount increase in active MJO phases at all sites, but the MJO has a stronger effect in the coastal region than the interior region. This modulation of rainfall by the MJO disturbance is largely attributed to rainfall frequency in the interior region, but to both frequency and intensity of rainfall in the coastal region. The low-level westerly wind anomaly enhances convergence, the land–sea breeze, and a midnight rainfall peak in the coastal region during the active MJO phase. Analysis of moisture flux divergence and moist static instability suggests the different dynamics of this modulation of the DC between coastal and interior regions.


MAUSAM ◽  
2021 ◽  
Vol 58 (1) ◽  
pp. 75-86
Author(s):  
HAMZA V ◽  
C. A. BABU

Features of sea and land breezes, surface fluxes and drag coefficient over Cochin are studied using more than 300 daily observations of air temperature, wind speed and direction data. The duration and intensity of sea breeze circulation vary with the rain or cloud as it reduces the differential heating. Onset of sea breeze is early in summer season for the near equatorial station compared to winter season. Cessation is almost same for all seasons and is around 1900 hours. The sea breeze circulation is almost westerly and land breeze circulation is almost easterly in all the seasons. It is found that in most of the cases, the temperature and wind speed decreases at the time of onset of sea breeze and turning of wind direction with height becomes counter clockwise (backing) during the transition period from land breeze to sea breeze. In all seasons, the momentum flux is directed downward. High values of momentum flux were found during the presence of sea breeze in pre-monsoon season. Average sensible heat flux is directed upward during the entire period and during nighttime it is almost zero in the winter and monsoon seasons. The intensity of momentum flux decreases during onset and cessation of sea breeze for all the cases. The cold air advection associated with the sea breeze results in the decrease of sensible heat flux at the time of onset of sea breeze. Averaged surface momentum and sensible flux patterns resemble closely to the instantaneous pattern for all the seasons. Generally, sea breeze is stronger than land breeze in all the seasons. Accordingly, the drag coefficient power relationship with wind is different for sea breeze and land breeze circulations.Key words – Sea breeze circulation, Monsoon boundary layer, Surface fluxes, Drag coefficient, Diurnal variation.


2014 ◽  
Vol 53 (4) ◽  
pp. 824-839 ◽  
Author(s):  
Hiroyuki Kusaka ◽  
Keiko Nawata ◽  
Asuka Suzuki-Parker ◽  
Yuya Takane ◽  
Nana Furuhashi

AbstractThis study examines how urbanization affects the precipitation climatology in Tokyo, Japan. A unique aspect of this study is that an ensemble, regional climatological simulation approach is used with sensitivity experiments to reduce uncertainty arising from nonlinearity in the precipitation simulations. Another aspect is that the robustness of the precipitation response is tested with “stress response” simulations with increasing urban forcing. The results show that urbanization causes a robust increase in the amount of precipitation in the Tokyo metropolitan area and a reduction in the inland areas. These anomalies are statistically significant at the 95% and 99% levels in some parts. There is no measureable change in the surrounding rural and ocean areas. These precipitation responses are attributed to an increase of surface sensible heat flux in Tokyo, which destabilizes the atmosphere and induces an anomalous surface low pressure pattern and the convergence of grid-scale horizontal moisture flux. The anomalous convergence of grid-scale horizontal moisture flux is a consequence of urbanization modifying the sea breeze.


2008 ◽  
Vol 9 (3) ◽  
pp. 521-534 ◽  
Author(s):  
Clara Draper ◽  
Graham Mills

Abstract The atmospheric water balance over the semiarid Murray–Darling River basin in southeast Australia is analyzed based on a consecutive series of 3- to 24-h NWP forecasts from the Australian Bureau of Meteorology’s Limited Area Prediction System (LAPS). Investigation of the LAPS atmospheric water balance, including comparison of the forecast precipitation to analyzed rain gauge observations, indicates that the LAPS forecasts capture the general qualitative features of the water balance. The key features of the atmospheric water balance over the Murray–Darling Basin are small atmospheric moisture flux divergence (at daily to annual time scales) and extended periods during which the atmospheric water balance terms are largely inactive, with the exception of evaporation, which is consistent and very large in summer. These features present unique challenges for NWP modeling. For example, the small moisture fluxes in the basin can easily be obscured by the systematic errors inherent in all NWP models. For the LAPS model forecasts, there is an unrealistically large evaporation excess over precipitation (associated with a positive bias in evaporation) and unexpected behavior in the moisture flux divergence. Two global reanalysis products (the NCEP Reanalysis I and the 40-yr ECMWF Re-Analysis) also both describe (physically unrealistic) long-term negative surface water budgets over the Murray–Darling Basin, suggesting that the surface water budget cannot be sensibly diagnosed based on output from current NWP models. Despite this shortcoming, numerical models are in general the most appropriate tool for examining the atmospheric water balance over the Murray–Darling Basin, as the atmospheric sounding network in Australia has extremely low coverage.


2009 ◽  
Vol 13 (7) ◽  
pp. 987-998 ◽  
Author(s):  
Z. Gao ◽  
D. H. Lenschow ◽  
Z. He ◽  
M. Zhou

Abstract. In order to examine energy partitioning and CO2 exchange over a steppe prairie in Inner Mongolia, China, fluxes of moisture, heat and CO2 in the surface layer from June 2007 through June 2008 were calculated using the eddy covariance method. The study site was homogenous and approximately 1500 m×1500 m in size. Seasonal and diurnal variations in radiation components, energy components and CO2 fluxes are examined. Results show that all four radiation components changed seasonally, resulting in a seasonal variation in net radiation. The radiation components also changed diurnally. Winter surface albedo was higher than summer surface albedo because during winter the snow-covered surface increased the surface albedo. The seasonal variations in both sensible heat and CO2 fluxes were stronger than those of latent heat and soil heat fluxes. Sensible heat flux was the main consumer of available energy for the entire experimental period. The energy imbalance problem was encountered and the causes are analyzed.


2020 ◽  
Vol 13 (6) ◽  
pp. 3221-3233 ◽  
Author(s):  
Andreas Behrendt ◽  
Volker Wulfmeyer ◽  
Christoph Senff ◽  
Shravan Kumar Muppa ◽  
Florian Späth ◽  
...  

Abstract. We present the first measurement of the sensible heat flux (H) profile in the convective boundary layer (CBL) derived from the covariance of collocated vertical-pointing temperature rotational Raman lidar and Doppler wind lidar measurements. The uncertainties of the H measurements due to instrumental noise and limited sampling are also derived and discussed. Simultaneous measurements of the latent heat flux profile (L) and other turbulent variables were obtained with the combination of water-vapor differential absorption lidar (WVDIAL) and Doppler lidar. The case study uses a measurement example from the HOPE (HD(CP)2 Observational Prototype Experiment) campaign, which took place in western Germany in 2013 and presents a cloud-free well-developed quasi-stationary CBL. The mean boundary layer height zi was at 1230 m above ground level. The results show – as expected – positive values of H in the middle of the CBL. A maximum of (182±32) W m−2, with the second number for the noise uncertainty, is found at 0.5 zi. At about 0.7 zi, H changes sign to negative values above. The entrainment flux was (-62±27) W m−2. The mean sensible heat flux divergence in the observed part of the CBL above 0.3 zi was −0.28 W m−3, which corresponds to a warming of 0.83 K h−1. The L profile shows a slight positive mean flux divergence of 0.12 W m−3 and an entrainment flux of (214±36) W m−2. The combination of H and L profiles in combination with variance and other turbulent parameters is very valuable for the evaluation of large-eddy simulation (LES) results and the further improvement and validation of turbulence parameterization schemes.


2018 ◽  
Vol 31 (23) ◽  
pp. 9565-9584 ◽  
Author(s):  
Sun Wong ◽  
Catherine M. Naud ◽  
Brian H. Kahn ◽  
Longtao Wu ◽  
Eric J. Fetzer

Precipitation (from TMPA) and cloud structures (from MODIS) in extratropical cyclones (ETCs) are modulated by phases of large-scale moisture flux convergence (from MERRA-2) in the sectors of ETCs, which are studied in a new coordinate system with directions of both surface warm fronts (WFs) and surface cold fronts (CFs) fixed. The phase of moisture flux convergence is described by moisture dynamical convergence Qcnvg and moisture advection Qadvt. Precipitation and occurrence frequencies of deep convective clouds are sensitive to changes in Qcnvg, while moisture tendency is sensitive to changes in Qadvt. Increasing Qcnvg and Qadvt during the advance of the WF is associated with increasing occurrences of both deep convective and high-level stratiform clouds. A rapid decrease in Qadvt with a relatively steady Qcnvg during the advance of the CF is associated with high-level cloud distribution weighting toward deep convective clouds. Behind the CF (cold sector or area with polar air intrusion), the moisture flux is divergent with abundant low- and midlevel clouds. From deepening to decaying stages, the pre-WF and WF sectors experience high-level clouds shifting to more convective and less stratiform because of decreasing Qadvt with relatively steady Qcnvg, and the CF experiences shifting from high-level to midlevel clouds. Sectors of moisture flux divergence are less influenced by cyclone evolution. Surface evaporation is the largest in the cold sector and the CF during the deepening stage. Deepening cyclones are more efficient in poleward transport of water vapor.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Shanshan Wu ◽  
Haibo Zou ◽  
Junjie Wu

With the 1 h-averaged data of atmospheric precipitable water vapor (PWV) for 2015–2018 retrieved from 18 ground-based Global Positioning System (GPS) observation stations near Poyang Lake (PL), China, the diurnal variations of the PWV during midsummer (July-August) are studied by the harmonic method. Results show that significant diurnal variations of PWV are found at the 18 GPS stations. The harmonics with 24 h cycle (diurnal cycle) over PL (i.e., Duchang and Poyang) and Nanchang city only have about 50% (or even smaller than 50%) of variance contribution with the amplitude of about 0.2 mm, while above 70% (or even 80%) of variance contribution occurs elsewhere around PL, with the amplitude of about 0.9 mm. The harmonics with diurnal cycles in most stations peak from afternoon to evening (i.e., 1200-2000 LST), but one exception is Duchang site, where the diurnal cycle peaks in the morning (i.e., 1000 LST). Moreover, the harmonics with 12 h cycle (semidiurnal cycle) have the relatively uniform amplitude of about 0.2 mm, but their variance contributions show uneven distribution, with the contributions of about or above 50% in PL and Nanchang city (the semidiurnal cycles peak about 0000 LST or 1200 LST) and below 30% (or even 10%) in other areas. The preliminary diagnosis analysis shows that the diurnal variation of the low-level (below 850 hPa) air temperature (increasing after the sunrise, decreasing after the sunset, and peaking around 1400-1800 LST) may be responsible for the diurnal cycle. Moreover, in PL (Duchang and Poyang) and Nanchang city, the effects (heating or cooling) of lake and urban, the diurnal variation of the 10 m wind over PL, and the acceleration of PL on overlying air also contributed to the diurnal variation of PWV.


2019 ◽  
Vol 76 (11) ◽  
pp. 3633-3654 ◽  
Author(s):  
Michael B. Natoli ◽  
Eric D. Maloney

Abstract Precipitation in the region surrounding the South China Sea over land and coastal waters exhibits a strong diurnal cycle associated with a land–sea temperature contrast that drives a sea-breeze circulation. The boreal summer intraseasonal oscillation (BSISO) is an important modulator of diurnal precipitation patterns, an understanding of which is a primary goal of the field campaign Propagation of Intraseasonal Tropical Oscillations (PISTON). Using 21 years of CMORPH precipitation for Luzon Island in the northern Philippines, it is shown that the diurnal cycle amplitude is generally maximized over land roughly 1 week before the arrival of the broader oceanic convective envelope associated with the BSISO. A strong diurnal cycle in coastal waters is observed in the transition from the inactive to active phase, associated with offshore propagation of the diurnal cycle. The diurnal cycle amplitude is in phase with daily mean precipitation over Mindanao but is nearly out of phase over Luzon. The BSISO influence on the diurnal cycle on the eastern side of topography is nearly opposite to that on the western side. Using wind, moisture, and radiation products from the ERA5 reanalysis, it is proposed that the enhanced diurnal cycle west of the mountains during BSISO suppressed phases is related to increased insolation and weaker prevailing onshore winds that promote a stronger sea-breeze circulation when compared with the May–October mean state. Offshore propagation is suppressed until ambient midlevel moisture increases over the surrounding oceans during the transition to the active BSISO phase. In BSISO enhanced phases, strong low-level winds and increased cloudiness suppress the sea-breeze circulation.


Sign in / Sign up

Export Citation Format

Share Document