scholarly journals Scenario-based inundation analysis of metro systems: a case study in Shanghai

Author(s):  
Hai-Min Lyu ◽  
Shui-Long Shen ◽  
Jun Yang ◽  
Zhen-Yu Yin

Abstract. Catastrophic urban floods result in severe inundation of underground facilities in recent years. This paper presents an integrated approach in which an algorithm is proposed to integrate the storm water management model (SWMM) into the geographical information system (GIS) to evaluate the inundation risk. The proposed algorithm simulates the flood inundation of overland flow and metro station for each schemed scenario. It involves i) determination of the grid location and spreading coefficient and ii) iterative calculation of the spreading process. Furthermore, to evaluate the potential inundation risks of metro systems, an equation to qualitatively calculate the inundation depth around a metro station is proposed. This equation considered the drainage capacity and characteristics of each metro station. The proposed method is applied to simulate the inundation risks of the metro system in the urban centre of Shanghai under 50-year, 100-year, and 500-year scenarios. Both the inundation extent and depth are derived. The proposed method is validated by verifying from the records of historical floods. The results demonstrate that in case of the 500-year-rainfall scenario, for an inundation depth of over 300 mm, the inundated area is up to 5.16 km2, which is 4.3 % of the studied area and that there are four metro stations inundated to a depth of over 300 mm.

2019 ◽  
Vol 23 (10) ◽  
pp. 4293-4307 ◽  
Author(s):  
Hai-Min Lyu ◽  
Shui-Long Shen ◽  
Jun Yang ◽  
Zhen-Yu Yin

Abstract. This study presents an integrated approach to evaluate inundation risks, in which an algorithm is proposed to integrate the storm water management model (SWMM) into a geographical information system (GIS). The proposed algorithm simulates the flood inundation of overland flows and in metro stations for each designed scenario. It involves the following stages: (i) determination of the grid location and spreading coefficient and (ii) an iterative calculation of the spreading process. In addition, an equation is proposed to calculate the inundation around a metro station and to predict the potential inundation risks of the metro system. The proposed method is applied to simulate the inundation risk of the metro system in the urban centre of Shanghai under 50-year, 100-year, and 500-year rainfall intensities. Both inundation extent and depth are obtained and the proposed method is validated with records of historical floods. The results demonstrate that in the case of a 500-year rainfall intensity, the inundated area with a water depth excess of 300 mm covers up to 5.16 km2. In addition, four metro stations are inundated to a depth of over 300 mm.


2020 ◽  
pp. 160-164
Author(s):  
Leonid Tsubov ◽  
Oresta Shcherban

The set of scientific-methodological tools to secure the mechanism of economic safety management of tourism entrepreneurship is examined as an aggregate of methods, tools, and conceptual activities directed at maintaining the high level of economic safety of tourism entrepreneurship. The features of managing the tourism enterprise and economic safety are analyzed. The basic valuation principles of the reliability and efficiency of the economic safety of the tourism enterprise are determined. The basic tasks of ensuring the economic safety of a small enterprise are outlined. The need to use the integrated approach that secures more opportunities to avoid threats and limits the danger of their emergence is emphasized. The most important principles for securing the economic safety of the tourism enterprise on the microeconomic level are described. Possible practical methods of risk management for the implementation of adopted decisions are proposed. The paper proves the fact that the complex nature of the management of the economic safety of the tourism enterprise and securing the sufficiently efficient management system of detecting and eliminating the threats are provided by the establishment of the management of the economic safety system of the tourism enterprise and its functional components. Research of the methodical approaches to the management of the tourism enterprises’ economic safety allows building and describing the functional structure of the mechanism of management of the tourist enterprise’s economic safety (it is formalized and described by 5 functions: determination of aims; planning; organization and adjusting; motivation and stimulation; control and monitoring).


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2647
Author(s):  
Esteban Sañudo ◽  
Luis Cea ◽  
Jerónimo Puertas

Dual urban drainage models allow users to simulate pluvial urban flooding by analysing the interaction between the sewer network (minor drainage system) and the overland flow (major drainage system). This work presents a free distribution dual drainage model linking the models Iber and Storm Water Management Model (SWMM), which are a 2D overland flow model and a 1D sewer network model, respectively. The linking methodology consists in a step by step calling process from Iber to a Dynamic-link Library (DLL) that contains the functions in which the SWMM code is split. The work involves the validation of the model in a simplified urban street, in a full-scale urban drainage physical model and in a real urban settlement. The three study cases have been carefully chosen to show and validate the main capabilities of the model. Therefore, the model is developed as a tool that considers the main hydrological and hydraulic processes during a rainfall event in an urban basin, allowing the user to plan, evaluate and design new or existing urban drainage systems in a realistic way.


Geosciences ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 493 ◽  
Author(s):  
Vincenzo Marsala ◽  
Alberto Galli ◽  
Giorgio Paglia ◽  
Enrico Miccadei

This work is focused on the landslide susceptibility assessment, applied to Mauritius Island. The study area is a volcanic island located in the western part of the Indian Ocean and it is characterized by a plateau-like morphology interrupted by three rugged mountain areas. The island is severely affected by geo-hydrological hazards, generally triggered by tropical storms and cyclones. The landslide susceptibility analysis was performed through an integrated approach based on morphometric analysis and preliminary Geographical Information System (GIS)-based techniques, supported by photogeological analysis and geomorphological field mapping. The analysis was completed following a mixed heuristic and statistical approach, integrated using GIS technology. This approach led to the identification of eight landslide controlling factors. Hence, each factor was evaluated by assigning appropriate expert-based weights and analyzed for the construction of thematic maps. Finally, all the collected data were mapped through a cartographic overlay process in order to realize a new zonation of landslide susceptibility. The resulting map was grouped into four landslide susceptibility classes: low, medium, high, and very high. This work provides a scientific basis that could be effectively applied in other tropical areas showing similar climatic and geomorphological features, in order to develop sustainable territorial planning, emergency management, and loss-reduction measures.


2017 ◽  
Vol 11 (2) ◽  
pp. 19-33
Author(s):  
Fagbohun Babatunde Joseph ◽  
Olabode Oluwaseun Franklin ◽  
Adebola Abiodun Olufemi

Abstract Identifying landscapes with similar hydrological characteristics is useful for the determination of dominant runoff process (DRP) and flood prediction. Several approaches used for DRP-mapping differ in respect to time and data requirement. Manual approaches based on field investigation and expert knowledge are time consuming and difficult to implement at regional scale. Automatic GIS-based approach on the other hand require simplification of data but are easier to implement and it is applicable on regional scale. In this study, GIS-based automated approach was used to identify the DRPs in Anambra area. The result showed that Hortonian Overland Flow (HOF) has the highest coverage of 1508.3 Km2 (33.5%) followed by Deep Percolation (DP) with coverage of 1455.3 Km2 (32.3%). Subsurface Flow (SSF) is the third dominant runoff process covering 920.6 Km2 (20.4%) while Saturated Overland Flow (SOF) covers the least area of 618.4 Km2 (13.7%) of the study area. The result reveal that considerable amount of precipitated water would be infiltrated into the subsurface through deep percolation process contributing to groundwater recharge in the study area. However, it is envisaged that HOF and SOF will continue to increase due to the continuous expansion of built-up area. With the expected increase in HOF and SOF and the change in rainfall pattern associated with perpetual problem of climate change, it is paramount that groundwater conservation practices be considered to ensure continued sustainable utilization of groundwater in the study area.


1968 ◽  
Vol 5 (01) ◽  
pp. 63-71
Author(s):  
Philip J. Danahy

The paper presents a method for the determination of the critical minimum scantlings for small high-speed vessels. Particular attention is given to the shell plating strength for hydrodynamic impact loads. The suggested method uses an integrated approach involving assumed loads, suggested safety factors, and preferred stress-analysis method. The stress analysis uses plastic theory based partly on the works of J. Clarkson and Thein Wah. Included in the paper is a comparison of the relative structural strength of several commercial, military, and experimental hydrofoil vessels along with a few planing boats and a seaplane hull. This shows the variation of existing vessel structures and compares them to the results obtained by the suggested method. Most commercial, military, and recreational vessels exceed the minimum scantlings of the suggested method. The most significant deviation is the hull of the seaplane:


2018 ◽  
Vol 18 (9) ◽  
pp. 2525-2536 ◽  
Author(s):  
Jiansheng Wu ◽  
Rui Yang ◽  
Jing Song

Abstract. The increase in impervious surfaces associated with rapid urbanization is one of the main causes of urban inundation. Low-impact development (LID) practices have been studied for mitigation of urban inundation. This study used a hydrodynamic inundation model, coupling SWMM (Storm Water Management Model) and IFMS-Urban (Integrated Flood Modelling System–Urban), to assess the effectiveness of LID under different scenarios and at different hazard levels. The results showed that LID practices can effectively reduce urban inundation. The maximum inundation depth was reduced by 3 %–29 %, average inundation areas were reduced by 7 %–55 %, and average inundation time was reduced by 0 %–43 % under the eight scenarios. The effectiveness of LID practices differed for the three hazard levels, with better mitigation of urban inundation at a low hazard level than at a high hazard level. Permeable pavement (PP) mitigated urban inundation better than green roofs (GRs) under the different scenarios and at different hazard levels. We found that more implementation area with LID was not necessarily more efficient, and the scenario of 10 % PP+10 % GR was more efficient for the study area than other scenarios. The results of this study can be used by local governments to provide suggestions for urban inundation control, disaster reduction, and urban renewal.


2019 ◽  
Vol 2 ◽  
pp. 1-6
Author(s):  
Diao Lin ◽  
Ruoxin Zhu

<p><strong>Abstract.</strong> Buses are considered as an important type of feeder model for urban metro systems. It is important to understand the integration of buses and metro systems for promoting public transportation. Using smart card data generated by automatic fare collection systems, we aim at exploring the characteristics of bus-and-metro integration. Taking Shanghai as a case study, we first introduced a rule-based method to extract metro trips and bus-and-metro trips from the raw smart card records. Based on the identified trips, we conducted three analyses to explore the characteristics of bus-and-metro integration. The first analysis showed that 46% users have at least two times of using buses to access metro stations during five weekdays. By combining the ridership of metro and bus-and-metro, the second analysis examined how the share of buses as the feeder mode change across space and time. Results showed that the share of buses as the feeder mode in morning peak hours is much larger than in afternoon peak hours, and metro stations away from the city center tend to have a larger share. Pearson correlation test was employed in the third analysis to explore the factors associated with the ratios of bus-and-metro trips. The metro station density and access metro duration are positively associated with the ratios. The number of bus lines around 100&amp;thinsp;m to 400&amp;thinsp;m of metro stations all showed a negative association, and the coefficient for 200&amp;thinsp;m is the largest. In addition, the temporal differences of the coefficients also suggest the importance of a factor might change with respect to different times. These results enhanced our understanding of the integration of buses and metro systems.</p>


Sign in / Sign up

Export Citation Format

Share Document