scholarly journals Using altimetry observations combined with GRACE to select parameter sets of a hydrological model in data scarce regions

2019 ◽  
Author(s):  
Petra Hulsman ◽  
Hessel C. Winsemius ◽  
Claire Michailovsky ◽  
Hubert H. G. Savenije ◽  
Markus Hrachowitz

Abstract. To ensure reliable model understanding of water movement and distribution in terrestrial systems, sufficient and good quality hydro-meteorological data are required. Limited availability of ground measurements in the vast majority of river basins world-wide increase the value of alternative data sources such as satellite observations in modelling. In the absence of directly observed river discharge data, other variables such as remotely sensed river water level may provide valuable information for the calibration and evaluation of hydrological models. This study investigates the potential of the use of remotely sensed river water level, i.e. altimetry observations, from multiple satellite missions to identify parameter sets for a hydrological model in the semi-arid Luangwa River Basin in Zambia. A distributed process-based rainfall runoff model with sub-grid process heterogeneity was developed and run on a daily timescale for the time period 2002 to 2016. Following a step-wise approach, various parameter identification strategies were tested to evaluate the potential of satellite altimetry data for model calibration. As a benchmark, feasible model parameter sets were identified using traditional model calibration with observed river discharge data. For the parameter identification using remote sensing, data from the Gravity Recovery and Climate Experiment (GRACE) were used in a first step to restrict the feasible parameter sets based on the seasonal fluctuations in total water storage. In a next step, three alternative ways of further restricting feasible model parameter sets based on satellite altimetry time-series from 18 different locations, i.e. virtual stations, along the Luangwa River and its tributaries were compared. In the calibrated benchmark case, daily river flows were reproduced relatively well with an optimum Nash-Sutcliffe efficiency of ENS,Q = 0.78 (5/95th percentiles of all feasible solutions ENS,Q,5/95 = 0.61 – 0.75). When using only GRACE observations to restrict the parameter space, assuming no discharge observations are available, an optimum of ENS,Q = −1.4 (ENS,Q,5/95 = −2.3 – 0.38) with respect to discharge was obtained. Depending on the parameter selection strategy, it could be shown that altimetry data can contain sufficient information to efficiently further constrain the feasible parameter space. The direct use of altimetry based river levels frequently over-estimated the flows and poorly identified feasible parameter sets due to the non-linear relationship between river water level and river discharge (ENS,Q,5/95 = −2.9 – 0.10); therefore, this strategy was of limited use to identify feasible model parameter sets. Similarly, converting modelled discharge into water levels using rating curves in the form of power relationships with two additional free calibration parameters per virtual station resulted in an over-estimation of the discharge and poorly identified feasible parameter sets (ENS,Q,5/95 = −2.6 – 0.25). However, accounting for river geometry proved to be highly effective; this included using river cross-section and gradient information extracted from global high-resolution terrain data available on Google Earth, and applying the Strickler-Manning equation with effective roughness as free calibration parameter to convert modelled discharge into water levels. Many parameter sets identified with this method reproduced the hydrograph and multiple other signatures of discharge reasonably well with an optimum of ENS,Q = 0.60 (ENS,Q,5/95 = −0.31 – 0.50). It was further shown that more accurate river cross-section data improved the water level simulations, modelled rating curve and discharge simulations during intermediate and low flows at the basin outlet at which detailed on-site cross-section information was available. For this case, the Nash-Sutcliffe efficiency with respect to river water levels increased from ENS,SM,GE = −1.8 (ENS,SM,GE,5/95 = −6.8 – −3.1) using river geometry information extracted from Google Earth to ENS,SM,ADCP = 0.79 (ENS,SM,ADCP,5/95 = 0.6 – 0.74) using river geometry information obtained from a detailed survey in the field. It could also be shown that increasing the number of virtual stations used for parameter selection in the calibration period can considerably improve the model performance in spatial split sample validation. The results provide robust evidence that in the absence of directly observed discharge data for larger rivers in data scarce regions, altimetry data from multiple virtual stations combined with GRACE observations have the potential to fill this gap when combined with readily available estimates of river geometry, thereby allowing a step towards more reliable hydrological modelling in poorly or ungauged basins.

2020 ◽  
Vol 24 (6) ◽  
pp. 3331-3359 ◽  
Author(s):  
Petra Hulsman ◽  
Hessel C. Winsemius ◽  
Claire I. Michailovsky ◽  
Hubert H. G. Savenije ◽  
Markus Hrachowitz

Abstract. Limited availability of ground measurements in the vast majority of river basins world-wide increases the value of alternative data sources such as satellite observations in hydrological modelling. This study investigates the potential of using remotely sensed river water levels, i.e. altimetry observations, from multiple satellite missions to identify parameter sets for a hydrological model in the semi-arid Luangwa River basin in Zambia. A distributed process-based rainfall–runoff model with sub-grid process heterogeneity was developed and run on a daily timescale for the time period 2002 to 2016. As a benchmark, feasible model parameter sets were identified using traditional model calibration with observed river discharge data. For the parameter identification using remote sensing, data from the Gravity Recovery and Climate Experiment (GRACE) were used in a first step to restrict the feasible parameter sets based on the seasonal fluctuations in total water storage. Next, three alternative ways of further restricting feasible model parameter sets using satellite altimetry time series from 18 different locations along the river were compared. In the calibrated benchmark case, daily river flows were reproduced relatively well with an optimum Nash–Sutcliffe efficiency of ENS,Q=0.78 (5/95th percentiles of all feasible solutions ENS,Q,5/95=0.61–0.75). When using only GRACE observations to restrict the parameter space, assuming no discharge observations are available, an optimum of ENS,Q=-1.4 (ENS,Q,5/95=-2.3–0.38) with respect to discharge was obtained. The direct use of altimetry-based river levels frequently led to overestimated flows and poorly identified feasible parameter sets (ENS,Q,5/95=-2.9–0.10). Similarly, converting modelled discharge into water levels using rating curves in the form of power relationships with two additional free calibration parameters per virtual station resulted in an overestimation of the discharge and poorly identified feasible parameter sets (ENS,Q,5/95=-2.6–0.25). However, accounting for river geometry proved to be highly effective. This included using river cross-section and gradient information extracted from global high-resolution terrain data available on Google Earth and applying the Strickler–Manning equation to convert modelled discharge into water levels. Many parameter sets identified with this method reproduced the hydrograph and multiple other signatures of discharge reasonably well, with an optimum of ENS,Q=0.60 (ENS,Q,5/95=-0.31–0.50). It was further shown that more accurate river cross-section data improved the water-level simulations, modelled rating curve, and discharge simulations during intermediate and low flows at the basin outlet where detailed on-site cross-section information was available. Also, increasing the number of virtual stations used for parameter selection in the calibration period considerably improved the model performance in a spatial split-sample validation. The results provide robust evidence that in the absence of directly observed discharge data for larger rivers in data-scarce regions, altimetry data from multiple virtual stations combined with GRACE observations have the potential to fill this gap when combined with readily available estimates of river geometry, thereby allowing a step towards more reliable hydrological modelling in poorly gauged or ungauged basins.


2018 ◽  
Vol 22 (9) ◽  
pp. 4815-4842 ◽  
Author(s):  
Vinícius A. Siqueira ◽  
Rodrigo C. D. Paiva ◽  
Ayan S. Fleischmann ◽  
Fernando M. Fan ◽  
Anderson L. Ruhoff ◽  
...  

Abstract. Providing reliable estimates of streamflow and hydrological fluxes is a major challenge for water resources management over national and transnational basins in South America. Global hydrological models and land surface models are a possible solution to simulate the terrestrial water cycle at the continental scale, but issues about parameterization and limitations in representing lowland river systems can place constraints on these models to meet local needs. In an attempt to overcome such limitations, we extended a regional, fully coupled hydrologic–hydrodynamic model (MGB; Modelo hidrológico de Grandes Bacias) to the continental domain of South America and assessed its performance using daily river discharge, water levels from independent sources (in situ, satellite altimetry), estimates of terrestrial water storage (TWS) and evapotranspiration (ET) from remote sensing and other available global datasets. In addition, river discharge was compared with outputs from global models acquired through the eartH2Observe project (HTESSEL/CaMa-Flood, LISFLOOD and WaterGAP3), providing the first cross-scale assessment (regional/continental  ×  global models) that makes use of spatially distributed, daily discharge data. A satisfactory representation of discharge and water levels was obtained (Nash–Sutcliffe efficiency, NSE > 0.6 in 55 % of the cases) and the continental model was able to capture patterns of seasonality and magnitude of TWS and ET, especially over the largest basins of South America. After the comparison with global models, we found that it is possible to obtain considerable improvement on daily river discharge, even by using current global forcing data, just by combining parameterization and better routing physics based on regional experience. Issues about the potential sources of errors related to both global- and continental-scale modeling are discussed, as well as future directions for improving large-scale model applications in this continent. We hope that our study provides important insights to reduce the gap between global and regional hydrological modeling communities.


2021 ◽  
Author(s):  
Erwan Garel ◽  
Ping Zhang ◽  
Huayang Cai

Abstract. Observations indicate that the fortnightly fluctuations in mean water level increase in amplitude along the lower half of a tide-dominated estuary (The Guadiana estuary) with negligible river discharge but remain constant upstream. Analytical solutions reproducing the semi-diurnal wave propagation shows that this pattern results from reflection effects at the estuary head. The phase difference between velocity and elevation increases from the mouth to the head (where the wave has a standing nature) as the high and low water levels get progressively closer to slack water. Thus, the tidal (flood-ebb) asymmetry in discharge is reduced in the upstream direction. It becomes negligible along the upper estuary half, as the mean sea level remains constant despite increased friction due to wave shoaling. Observations of a flat mean water level along a significant portion of an upper estuary, easier to obtain than the phase difference, can therefore indicate significant reflection of the propagating semi-diurnal wave at the head. Details of the analytical model shows that changes in the mean depth or length of semi-arid estuaries, in particular for macrotidal locations, affect the fortnightly tide amplitude, and thus the upstream mass transport and inundation regime. This has significant potential impacts on the estuarine environment.


2018 ◽  
Vol 7 (1) ◽  
pp. 26-29
Author(s):  
Asril Zevri

Abstract: Belawan River Basin is one of the watershed, which currently change the land use because of the increasing population and industrial development. Rainfall with high intensity can cause rapid runoff, causing flood around the plains of the river cross section. The purpose of this research is to determine the flood water level of Belawan Watershed and flood discharge return period. Scope of activity in this research is analyzing daily rainfall Belawan watershed with the flood-discharge return period. Scope of activity in this research is analyzing maximum daily rainfall Belawan Watershed, and simulating flood water level with HECRAS. The result of the study shows that the potency of Belawan watershed flood water level is caused by flood discharge at 25 to 100 years especially in the middle to downstream of river cross section that is between 0.7 m and 3.3 m. Keywords: Flood Discharge, Flood Level, Belawan Watershed, Software HECRAS. Abstrak: Daerah Aliran Sungai Belawan adalah salah satu DAS yang pada saat ini mengalami perubahan tata guna lahan seiring bertambahnya jumlah penduduk dan perkembangan industri. Curah hujan yang tinggi dapat mengakibatkan limpasan sehingga menimbulkan tinggi muka air banjir di sekitar dataran penampang sungai. Tujuan dari penelitian ini adalah untuk mensimulasi tinggi muka air banjir DAS Belawan dengan debit banjir periode kala ulangnya. Lingkup kegiatan dalam penelitian ini yaitu menganalisa curah hujan harian maksimum rata-rata DAS Belawan dan menganalisa debit banjir kala ulang 2 sampai dengan 100 tahun, mensimulasi tinggi muka air banjir dengan HECRAS. Hasil studi menunjukan potensi tinggi muka air banjir DAS Belawan terjadi akibat debit banjir periode kala ulang 25 sampai dengan 100 tahun khususnya  di bagian tengah sampai hilir penampang sungai yaitu berkisar antara 0.7 m sampai dengan 3.3 m. Kata kunci: Debit banjir, Tinggi Banjir, DAS Belawan, Software HECRAS.


2018 ◽  
Vol 211 ◽  
pp. 112-128 ◽  
Author(s):  
Qi Huang ◽  
Di Long ◽  
Mingda Du ◽  
Chao Zeng ◽  
Xingdong Li ◽  
...  

2018 ◽  
Vol 9 (2) ◽  
pp. 80-85
Author(s):  
Saiful Arfaah ◽  
Iswinarti

The cause of flooding in the watershed area, one of which is caused by the inability of the river profile to accommodate the existing discharge (overflow). This research is intended to examine flood discharge and flood water level profile of Kali Gunting as a first step to determine flood mitigation solutions. Analysis of flood water level profiles using the Hec-Race 4.0 modeling program. With the help of this program, it is expected to be able to accommodate the flow parameters that are so complex. After modeling and knowing the capabilities of each part (cross section), this result will be a technical reference in determining flood mitigation measures. From the results of the study, the analysis of the potential for flooding in the scissor area was obtained as a result of the flood discharge capacity at scissors times = 301.00m3 / dt, and the emission times = 136.66m3 / dt for the 50th return period. The results of the Q50th calculation show that the condition of K. Scissors P0-P36 river water overflows / floods because the flood water level is above the eksesting embankment, while P36-P46 does not overflow / does not flood because the flood water level is below the eksesting dike. K. Panir condition P0-P48 river water overflows / floods because the flood water level is above the eksesting embankment, while P48-P60 does not overflow / does not flood because the flood water level is below the eksesting embankment


2021 ◽  
Vol 11 (20) ◽  
pp. 9691
Author(s):  
Nur Atirah Muhadi ◽  
Ahmad Fikri Abdullah ◽  
Siti Khairunniza Bejo ◽  
Muhammad Razif Mahadi ◽  
Ana Mijic

The interest in visual-based surveillance systems, especially in natural disaster applications, such as flood detection and monitoring, has increased due to the blooming of surveillance technology. In this work, semantic segmentation based on convolutional neural networks (CNN) was proposed to identify water regions from the surveillance images. This work presented two well-established deep learning algorithms, DeepLabv3+ and SegNet networks, and evaluated their performances using several evaluation metrics. Overall, both networks attained high accuracy when compared to the measurement data but the DeepLabv3+ network performed better than the SegNet network, achieving over 90% for overall accuracy and IoU metrics, and around 80% for boundary F1 score (BF score), respectively. When predicting new images using both trained networks, the results show that both networks successfully distinguished water regions from the background but the outputs from DeepLabv3+ were more accurate than the results from the SegNet network. Therefore, the DeepLabv3+ network was used for practical application using a set of images captured at five consecutive days in the study area. The segmentation result and water level markers extracted from light detection and ranging (LiDAR) data were overlaid to estimate river water levels and observe the water fluctuation. River water levels were predicted based on the elevation from the predefined markers. The proposed water level framework was evaluated according to Spearman’s rank-order correlation coefficient. The correlation coefficient was 0.91, which indicates a strong relationship between the estimated water level and observed water level. Based on these findings, it can be concluded that the proposed approach has high potential as an alternative monitoring system that offers water region information and water level estimation for flood management and related activities.


2020 ◽  
Vol 2 (2) ◽  
pp. 178
Author(s):  
Srie Wulandarie

AbstractThe purpose of this study was to determine the hydrodynamic model of the river so that can know the capacity of the river to accommodate the incoming water flow. The simulation models can be used in structural mitigation plan as an attempt to prevent flooding in the future. The application program used to create hydrodynamic models that Infoworks River Simulation integrated with GIS. Data cross-section of the river as much as 39 points inputted into Infoworks River Simulation program. Furthermore, the discharge input the Saddang River and the Mata Allo River to determine variations in water level at each cross-section. The results of this study showed an average increase in water level of the Saddang  and Mata Allo River in the event of the maximum discharge of 2.59 meters. Sectional increased water levels are all cross sections along the Saddang and Mata Allo River Saddang used in modeling the variation of the rise in water level of 0.8 to 5.39 meters.


2019 ◽  
Vol 14 (2) ◽  
pp. 260-268 ◽  
Author(s):  
Shuichi Tsuchiya ◽  
◽  
Masaki Kawasaki

With the aim of accurately predicting river water levels a few hours ahead in the event of a flood, we created a river water level prediction model consisting of a runoff model, a channel model, and data assimilation technique. We also developed a cascade assimilation method that allows us to calculate assimilations of water levels observed at multiple points using particle filters in real-time. As a result of applying the river water level prediction model to Arakawa Basin using the assimilation technique, it was confirmed that reproductive simulations that produce results very similar to the observed results could be achieved, and that we would be able to predict river water levels less affected by the predicted amount of rainfall.


2020 ◽  
Author(s):  
Rossella Belloni ◽  
Stefania Camici ◽  
Angelica Tarpanelli

<p>In view of recent dramatic floods and drought events, the detection of trends in the frequency and magnitude of long time series of flood data is of scientific interest and practical importance. It is essential in many fields, from climate change impact assessment to water resources management, from flood forecasting to drought monitoring, for the planning of future water resources and flood protection systems. <br>To detect long-term changes in river discharge a dense, in space and time, network of monitoring stations is required. However, ground hydro-meteorological monitoring networks are often missing or inadequate in many parts of the world and the global supply of the available river discharge data is often restricted, preventing to identify trends over large areas.  <br>The most direct method of deriving such information on a global scale involves satellite earth observation. Over the last two decades, the growing availability of satellite sensors, and the results so far obtained in the estimation of river discharge from the monitoring of the water level through satellite radar altimetry has fostered the interest on this subject.  <br>Therefore, in the attempt to overcome the lack of long continuous observed time series, in this study satellite altimetry water level data are used to set-up a consistent, continuous and up-to-date daily discharge dataset for different sites across the world. Satellite-derived water levels provided by publicly available datasets (Podaac, Dahiti, River& Lake, Hydroweb and Theia) are used along with available ground observed river discharges to estimate rating curves. Once validated, the rating curves are used to fill and extrapolate discharge data over the whole period of altimetry water level observations. The advantage of using water level observations provided by the various datasets allowed to obtain discharge time series with improved spatio-temporal coverages and resolutions, enabling to extend the study on a global scale and to efficiently perform the analysis even for small to medium-sized basins.  <br>Long continuous discharge time series so obtained are used to perform a global trend analysis on extreme flood and drought events. Specifically, annual maximum discharge and peak-over threshold values are extracted from the simulated daily discharge time series, as proxy variables of independent flood events. For flood and drought events, a trend analysis is carried out to identify changes in the frequency and magnitude of extreme events through the Mann-Kendall (M-K) test and a linear regression model between time and the flood magnitude.  <br>The analysis has permitted to identify areas of the world prone to floods and drought, so that appropriate actions for disaster risk mitigation and continuous improvement in disaster preparedness, response, and recovery practices can be adopted. </p>


Sign in / Sign up

Export Citation Format

Share Document