scholarly journals Technical note: Evaporating water is different from bulk soil water in δ<sup>2</sup>H and δ<sup>18</sup>O

2021 ◽  
Author(s):  
Hongxiu Wang ◽  
Jingjing Jin ◽  
Bingcheng Si ◽  
Xiaojun Ma ◽  
Mingyi Wen

Abstract. Soil evaporation is a key process in the water cycle and can be conveniently quantified with δ2H and δ18O in bulk surface soil water (BW). However, recent research shows that larger soil pore water evaporates first and differs from small pore water in δ2H and δ18O, which disqualifies quantification of evaporation from BW δ2H and δ18O. We hypothesize that BW has different isotopic compositions than evaporating water (EW). Therefore, our objectives are to test the hypothesis, and to evaluate if the difference alters the calculated evaporative water loss. We measured isotopic composition in soil water in two continuous evaporation periods in a summer maize field. Period Ⅰ had a duration of 32 days following a precipitation event and Period Ⅱ lasted 24 days following an irrigation event with a 2H-enriched water. BW was obtained by cryogenically extracting water from samples of 0–5 cm soil taken every three days; EW was derived from condensation water collected every two days on plastic film placed on soil surface. Results showed that when newly added water was heavier than pre-event BW, δ2H of BW in Period Ⅱ decreased with the increase of evaporation time, indicating evaporation of heavy water; when newly added water was lighter than pre-event BW, δ2H and δ18O of BW in Period Ⅰ and δ18O of BW in Period Ⅱ increased with increasing evaporation time, suggesting evaporation of light water. Moreover, relative to BW, EW had significantly smaller δ2H and δ18O in Period Ⅰ and significantly smaller δ18O in Period Ⅱ (p  0.05). Our results have important implication for quantifying evaporation process with water stable isotopes.

2021 ◽  
Vol 25 (10) ◽  
pp. 5399-5413
Author(s):  
Hongxiu Wang ◽  
Jingjing Jin ◽  
Buli Cui ◽  
Bingcheng Si ◽  
Xiaojun Ma ◽  
...  

Abstract. Soil evaporation is a key process in the water cycle and can be conveniently quantified using δ2H and δ18O in bulk surface soil water (BW). However, recent research shows that soil water in larger pores evaporates first and differs from water in smaller pores in δ2H and δ18O, which disqualifies the quantification of evaporation from BW δ2H and δ18O. We hypothesized that BW had different isotopic compositions from evaporating water (EW). Therefore, our objectives were to test this hypothesis first and then evaluate whether the isotopic difference alters the calculated evaporative water loss. We measured the isotopic composition of soil water during two continuous evaporation periods in a summer maize field. Period I had a duration of 32 d, following a natural precipitation event, and period II lasted 24 d, following an irrigation event with a 2H-enriched water. BW was obtained by cryogenically extracting water from samples of 0–5 cm soil taken every 3 d; EW was derived from condensation water collected every 2 d on a plastic film placed on the soil surface. The results showed that when event water was heavier than pre-event BW, δ2H of BW in period II decreased, with an increase in evaporation time, indicating heavy water evaporation. When event water was lighter than the pre-event BW, δ2H and δ18O of BW in period I and δ18O of BW in period II increased with increasing evaporation time, suggesting light water evaporation. Moreover, relative to BW, EW had significantly smaller δ2H and δ18O in period I and significantly smaller δ18O in period II (p<0.05). These observations suggest that the evaporating water was close to the event water, both of which differed from the bulk soil water. Furthermore, the event water might be in larger pores from which evaporation takes precedence. The soil evaporative water losses derived from EW isotopes were compared with those from BW. With a small isotopic difference between EW and BW, the evaporative water losses in the soil did not differ significantly (p>0.05). Our results have important implications for quantifying evaporation processes using water stable isotopes. Future studies are needed to investigate how soil water isotopes partition differently between pores in soils with different pore size distributions and how this might affect soil evaporation estimation.


1985 ◽  
Vol 15 (3-4) ◽  
pp. 307-310 ◽  
Author(s):  
J. R. Gat ◽  
Ε. Matsui ◽  
Ε. Salati

If widespread deforestation in Amazon results in reduced evaporative water flux, then either a decrease in evaporation is compensated locally by reduced rainfall,or else changed moisture balance expresses itself downwind in the yet undisturbed forest. The question of where rain will occur is crucial. It is suggested that the appearance of clouds and the occurrence of rainout is governed primarily by the interplay of local meteorologic and physical geography parameters with the atmospheric stability structure except for a few well-defined periods when rain is dominated by large scale atmospheric instability. This means that the study of these phenomena (local heat balances,studies on cloud formation mechanism, vertical atmospheric stability, etc.) must be made on the scale of the cloud size, a few tens of kilometers at most.


2010 ◽  
Vol 53 (10) ◽  
pp. 1527-1532 ◽  
Author(s):  
YuanJun Zhu ◽  
YunQiang Wang ◽  
MingAn Shao

2021 ◽  
Author(s):  
Vito Tagarelli ◽  
Federica Cotecchia ◽  
Osvaldo Bottiglieri

&lt;p&gt;The soil-vegetation-atmosphere interaction is becoming more and more the subject of intense scientific research, motivated by the wish of using smart vegetation implants as sustainable mitigation measure for erosive phenomena and slope instability processes.&amp;#160;&lt;br&gt;The use of novel naturalistic interventions making use of vegetation has been already proven to be successful in the reduction of erosion along sloping grounds, or in increasing the stability of the shallow covers of slopes, whereas the success of vegetation as slope stabilization measure still needs to be scientifically proven for slopes location of deep landslides, whose current activity is climate-induced, as frequent in the south-eastern Apennines. Recently, though, peculiar natural perennial grass species, which develop deep root systems, have been found to grow in the semi-arid climate characterizing the south-eastern Apennines and to determine a strong transpirative flow. Therefore, their peculiar leaf architecture, their crop density, combined with their perennial status and transpiration capacity, make such grass species suitable for the reduction of the net infiltration rates, equal to the difference between the rainfall rate and the sum of the runoff plus the evapotranspiration rate. As such, the grass species here of reference have been selected as vegetation measure intended to determine a reduction of the piezometric levels in the slope down to large depths, in order to increase the stability of deep landslide bodies.&amp;#160;&lt;br&gt;At this stage, only preliminary field data representing the interaction of clayey soils with the above cited vegetation species are available. These have been logged within a full scale in-situ test site, where the deep-rooted crop spices have been seeded and farmed. The test site (approximatively 2000 m&lt;sup&gt;2&lt;/sup&gt;) has been set up in the toe area of the climate-induced Pisciolo landslide, in the eastern sector of the Southern Apennines.&lt;br&gt;The impact of the vegetation on the hydro-mechanical state of the soil is examined in terms of the spatial and temporal variation of the soil water content, suction an pore water pressure from ground level down to depth, both within the vegetated test site and outside it, where only spare wild vegetation occur, in order to assess the effects of the implant of the selected vegetation. The soil water contents, suctions and pore water pressures have been also analyzed taking into account of the climatic actions, monitored by means of a meteorological station.&amp;#160;&lt;/p&gt;


2021 ◽  
Author(s):  
Vesna Zupanc ◽  
Matjaž Glavan ◽  
Miha Curk ◽  
Urša Pečan ◽  
Michael Stockinger ◽  
...  

&lt;p&gt;Environmental tracers, present in the environment and provided by nature, provide integrative information about both water flow and transport. For studying water flow and solute transport, the hydrogen and oxygen isotopes are of special interest, as their ratios provide a tracer signal with every precipitation event and are seasonally distributed. In order to follow the seasonal distribution of stable isotopes in the soil water and use this information for identifying hydrological processes and hydraulic properties, soil was sampled three times in three profiles, two on Kr&amp;#353;ko polje aquifer in SE Slovenia and one on Ljubljansko polje in central Slovenia. Isotope composition of soil water was measured with the water-vapor-equilibration method. Based on the isotope composition of soil water integrative information about water flow and transport processes with time and depth below ground were assessed. Porewater isotopes were in similar range as precipitation for all three profiles. &amp;#160;Variable isotope ratios in the upper 60 cm for the different sampling times indicated dynamic water fluxes in this upper part of the vadose zone. Results also showed more evaporation at one sampling location, Brege. The information from stable isotopes will be of importance for further analyzing the water fluxes in the vadose zone of the study sties.&amp;#160;&lt;br&gt;This research was financed by the ARRS BIAT 20-21-32 and IAEA CRP 1.50.18 Multiple isotope fingerprints to identify sources and transport of agro-contaminants. &amp;#160;&lt;/p&gt;


2012 ◽  
Vol 59 (No. 1) ◽  
pp. 1-7 ◽  
Author(s):  
B. Wang ◽  
W. Liu ◽  
Q. Xue ◽  
T. Dang ◽  
C. Gao ◽  
...  

The objective of this study was to investigate the effect of nitrogen (N) management on soil water recharge, available soil water at sowing (ASWS), soil water depletion, and wheat (Triticum aestivum L.) yield and water use efficiency (WUE) after long-term fertilization. We collected data from 2 experiments in 2 growing seasons. Treatments varied from no fertilization (CK), single N or phosphorus (P), N and P (NP), to NP plus manure (NPM). Comparing to CK and single N or P treatments, NP and NPM reduced rainfall infiltration depth by 20&ndash;60 cm, increased water recharge by 16&ndash;21 mm, and decreased ASWS by 89&ndash;133 mm in 0&ndash;300 cm profile. However, crop yield and WUE continuously increased in NP and NPM treatments after 22 years of fertilization. Yield ranged from 3458 to 3782 kg/ha in NP or NPM but was 1246&ndash;1531 kg/ha in CK and single N or P. WUE in CK and single N or P treatments was &lt; 6 kg/ha/mm but increased to 12.1 kg/ha/mm in a NP treatment. The NP and NPM fertilization provided benefits for increased yield and WUE but resulted in lower ASWS. Increasing ASWS may be important for sustainable yield after long-term fertilization.


Author(s):  
Fernando Gomes de Souza ◽  
Valdinar Ferreira Melo ◽  
Wellington Farias Araújo ◽  
Thiago Henrique de Castro Araújo

Currently in Brazil, the main form of erosion is caused by the impact of raindrops on the soil surface, triggering the process of water erosion and causing serious damage to agricultural areas. This study evaluated losses of soil, water, organic carbon and nutrients in different cultures, bare soil and savanna under natural rain. The experimental design was completely randomized with five treatments (bare soil - BS, cowpea bean - CB, Brachiaria brizantha - BB, corn - CO and natural savanna – SN) with three replications; The treatment of bare soil (BS), followed by the treatment cultivated with cowpea bean  (CB) showed higher losses of soil, water, organic carbon and nutrients; The highest losses of soil, water, organic carbon and nutrients in the treatment of bare soil (BS) occurred during the period of greatest erosivity; but for treatments CB, BB and CO, the highest losses occurred during the establishment of the crop, in view of the lower soil cover. Soils cultivated with Brachiaria brizantha - BB, corn - CO and in the Natural Savana - SN area were more efficient in reducing soil and water losses during all months evaluated. Plant cover produced by the (SN) treatment and by the (BB) and (CO) treatments acted to reduce the harmful effects of erosion, minimizing losses of nutrients and organic carbon. The soil should be well protected during periods when rainfall presents the highest values of erosivity index.


Sign in / Sign up

Export Citation Format

Share Document