scholarly journals Disentangling the scarcity of near-natural Iberian hydrological resources since 1980s: a multivariate-driven approach

2021 ◽  
Author(s):  
Amar Halifa-Marín ◽  
Miguel Ángel Torres-Vázquez ◽  
Enrique Pravia-Sarabia ◽  
Marc Lemus-Cánovas ◽  
Juan Pedro Montávez ◽  
...  

Abstract. A significant abrupt decrease of Winter Precipitation (WP) has been noticed in the Iberian Peninsula since the 1980s related to atmospheric drivers. This contribution assesses the long-term variability of water resources based on a multivariate-driven approach. For this purpose, the novel dataset of Near Natural Water Inflows to Reservoirs of Spain (NENWIRES) was created. Results confirm that Winter Water Inflows (WWI) have been modulated by the sudden decline in WP. These drastic reductions of WP/WWI were mainly controlled by the enhancement of the positive phase of the North Atlantic Oscillation (NAOi+). Nonetheless, our results also highlight the anthropogenic/physical causes contributing to the 1980s shift in the hydroclimate series. The rise of temperature, the cropland abandonment and forest extension provoked evapotranspiration gains and run-off weakening. NENWIRES most humid catchments registered the decrease of WWI promoted by NAOi+ persistence/frequency, while the land greening-up and ET rises explain the WWI losses in the Iberian semiarid environments. This contribution sheds some light on the recent debate about magnitude/drivers of streamflow declining over southern Europe. Therefore, it might help water planning with the goal of mitigating the climate change impacts affecting the water cycle.

2010 ◽  
Vol 23 (6) ◽  
pp. 1291-1307 ◽  
Author(s):  
Tim Woollings ◽  
Abdel Hannachi ◽  
Brian Hoskins ◽  
Andrew Turner

Abstract The distribution of the daily wintertime North Atlantic Oscillation (NAO) index in the 40-yr ECMWF Re-Analysis (ERA-40) is significantly negatively skewed. Dynamical and statistical analyses both suggest that this skewness reflects the presence of two distinct regimes—referred to as “Greenland blocking” and “subpolar jet.” Changes in both the relative occurrence and in the structure of the regimes are shown to contribute to the long-term NAO trend over the ERA-40 period. This is contrasted with the simulation of the NAO in 100-yr control and doubled CO2 integrations of the third climate configuration of the Met Office Unified Model (HadCM3). The model has clear deficiencies in its simulation of the NAO in the control run, so its predictions of future behavior must be treated with caution. However, the subpolar jet regime does become more dominant under anthropogenic forcing and, while this change is small it is clearly statistically significant and does represent a real change in the nature of NAO variability in the model.


2013 ◽  
Vol 9 (4) ◽  
pp. 4553-4598 ◽  
Author(s):  
G. Milzer ◽  
J. Giraudeau ◽  
S. Schmidt ◽  
F. Eynaud ◽  
J. Faust

Abstract. In the present study we investigate dinocyst assemblages in the Trondheimsfjord over the last 25 to 50 yr from three well-dated multi-cores (210Pb and 137Cs) retrieved along the fjord axis. The downcore distribution of the cysts is discussed in view of changes of the key surface water parameters sea-surface temperatures (SSTs) and sea-surface salinities (SSSs) monitored in the fjord, as well as river discharges. We examine the impact of the North Atlantic Oscillation pattern and of waste water supply from the local industry and agriculture on the fjord ecological state and hence dinocyst species diversity. Our results show that dinocyst production and diversity in the fjord is not evidently affected by human-induced eutrophication. Instead the assemblages appear to be mainly controlled by the NAO-related changes in physico-chemical characteristics of the surface mixed layer. Still, discharges of major rivers were modulated, since 1985 by the implementation of hydropower plants which certainly influences the freshwater and nutrient supply into the fjord. The impact, however, is variable according to the local geographical setting, and barely differentiated from natural changes in river run off. We ultimately test the use of the modern analogue technique (MAT) for the reconstruction of winter and summer SSTs and SSSs and annual primary productivity (PP) in this particular fjord setting. The reconstructed data are compared with time-series of SSTs and SSSs measured at 10 m water depth, as well as with mean annual PPs along the Norwegian coast and within Scandinavian fjords. The reconstructions are in general good agreement with the instrumental measurements and observations from other fjords. Major deviations can be addressed to peculiarities in the assemblages linked to the particular fjord setting and the related hydrological structure.


2012 ◽  
Vol 16 (5) ◽  
pp. 1389-1399 ◽  
Author(s):  
P. De Vita ◽  
V. Allocca ◽  
F. Manna ◽  
S. Fabbrocino

Abstract. Thus far, studies on climate change have focused mainly on the variability of the atmospheric and surface components of the hydrologic cycle, investigating the impact of this variability on the environment, especially with respect to the risks of desertification, droughts and floods. Conversely, the impacts of climate change on the recharge of aquifers and on the variability of groundwater flow have been less investigated, especially in Mediterranean karst areas whose water supply systems depend heavily upon groundwater exploitation. In this paper, long-term climatic variability and its influence on groundwater recharge were analysed by examining decadal patterns of precipitation, air temperature and spring discharges in the Campania region (southern Italy), coupled with the North Atlantic Oscillation (NAO). The time series of precipitation and air temperature were gathered over 90 yr, from 1921 to 2010, using 18 rain gauges and 9 air temperature stations with the most continuous functioning. The time series of the winter NAO index and of the discharges of 3 karst springs, selected from those feeding the major aqueducts systems, were collected for the same period. Regional normalised indexes of the precipitation, air temperature and karst spring discharges were calculated, and different methods were applied to analyse the related time series, including long-term trend analysis using smoothing numerical techniques, cross-correlation and Fourier analysis. The investigation of the normalised indexes highlighted the existence of long-term complex periodicities, from 2 to more than 30 yr, with differences in average values of up to approximately ±30% for precipitation and karst spring discharges, which were both strongly correlated with the winter NAO index. Although the effects of the North Atlantic Oscillation (NAO) had already been demonstrated in the long-term precipitation and streamflow patterns of different European countries and Mediterranean areas, the results of this study allow for the establishment of a link between a large-scale atmospheric cycle and the groundwater recharge of carbonate karst aquifers. Consequently, the winter NAO index could also be considered as a proxy to forecast the decadal variability of groundwater flow in Mediterranean karst areas.


2020 ◽  
Vol 16 (1) ◽  
pp. 283-298 ◽  
Author(s):  
Pierre Sabatier ◽  
Marie Nicolle ◽  
Christine Piot ◽  
Christophe Colin ◽  
Maxime Debret ◽  
...  

Abstract. North Africa is the largest source of mineral dust on Earth, which has multiple impacts on the climate system; however, our understanding of decadal to centennial changes in African dust emissions over the last few millenniums is limited. Here, we present a high-resolution multiproxy analysis of sediment core from high-elevation Lake Bastani, on the island of Corsica, to reconstruct past African dust inputs to the western Mediterranean area over the last 3150 cal BP. Clay mineralogy with palygorskite and a clay ratio associated with geochemical data allow us to determine that terrigenous fluxes are almost exclusively related to atmospheric dust deposition from the western Sahara and Sahel areas over this period. High-resolution geochemical contents provide a reliable proxy for Saharan dust inputs with long-term (millennial) to short-term (centennial) variations. Millennial variations have been correlated with the long-term southward migration of the Intertropical Convergence Zone (ITCZ), with an increase in dust input since 1070 cal BP. This correlation suggests a strong link with the ITCZ and could reflect the increased availability of dust sources to be mobilized with an increase in wind and a decrease in precipitation over western and North Africa. For centennial to decadal variations, wavelet analyses show that since 1070 cal BP, the North Atlantic Oscillation (NAO) has been the main climatic forcing, with an increase in Saharan dust input during the positive phase, as suggested by previous studies over the last decades. However, when the ITCZ is in a northern position, before 1070 cal BP, wavelet analyses indicate that total solar irradiance (TSI) is the main forcing factor, with an increase in African dust input during low TSI. With climate reanalysis over the instrumental era, during low TSI we observe a significant negative anomaly in pressure over Africa, which is known to increase the dust transport. These two climatic forcing factors (NAO, TSI) modulate Saharan dust inputs to the Mediterranean area at a centennial timescale through changes in wind and transport pathways.


2021 ◽  
Vol 25 (4) ◽  
pp. 2223-2237
Author(s):  
William Rust ◽  
Mark Cuthbert ◽  
John Bloomfield ◽  
Ron Corstanje ◽  
Nicholas Howden ◽  
...  

Abstract. An understanding of multi-annual behaviour in streamflow allows for better estimation of the risks associated with hydrological extremes. This can enable improved preparedness for streamflow-dependant services, such as freshwater ecology, drinking water supply and agriculture. Recently, efforts have focused on detecting relationships between long-term hydrological behaviour and oscillatory climate systems (such as the North Atlantic Oscillation – NAO). For instance, the approximate 7 year periodicity of the NAO has been detected in groundwater-level records in the North Atlantic region, providing potential improvements to the preparedness for future water resource extremes due to their repetitive, periodic nature. However, the extent to which these 7-year, NAO-like signals are propagated to streamflow, and the catchment processes that modulate this propagation, are currently unknown. Here, we show statistically significant evidence that these 7-year periodicities are present in streamflow (and associated catchment rainfall), by applying multi-resolution analysis to a large data set of streamflow and associated catchment rainfall across the UK. Our results provide new evidence for spatial patterns of NAO periodicities in UK rainfall, with areas of greatest NAO signal found in southwest England, south Wales, Northern Ireland and central Scotland, and show that NAO-like periodicities account for a greater proportion of streamflow variability in these areas. Furthermore, we find that catchments with greater subsurface pathway contribution, as characterised by the baseflow index (BFI), generally show increased NAO-like signal strength and that subsurface response times (as characterised by groundwater response time – GRT), of between 4 and 8 years, show a greater signal presence. Our results provide a foundation of understanding for the screening and use of streamflow teleconnections for improving the practice and policy of long-term streamflow resource management.


Author(s):  
Julia Nikolaevna Chizhova

The subject of this article is exmination of the influence of the Arctic air flow on the climatic conditions of the winter period in the center of the European territory of Russia (Moscow). In recent years, the question of the relationship between regional climatic conditions and such global circulation patterns as the North Atlantic Oscillation (NAO) and the Arctic Oscillation (AK) has become increasingly important. Based on the data of long-term observations of temperature and precipitation, the relationship with the AK and NAO was considered. For the winter months of the period 2014-2018, the back trajectories of the movement of air masses were computed for each date of precipitation to identify the sources of precipitation. The amount of winter precipitation that forms the snow cover of Moscow has no connection with either the North Atlantic Oscillation or the Arctic Oscillation. The Moscow region is located at the intersection of the zones of influence of positive and negative phases of both cyclonic patterns (AK and NAO), which determine the weather in the Northern Hemisphere. For the winter months, a correlation between the surface air temperature and NAO (r = 0.72) and AK (r = 0.66) was established. Winter precipitation in the center of the European territory of Russiais mainly associated with the unloading of Atlantic air masses. Arctic air masses relatively rarely invade Moscow region and bring little precipitation (their contribution does not exceed 12% of the total winter precipitation).


2014 ◽  
Vol 14 (14) ◽  
pp. 21065-21099
Author(s):  
I. Petropavlovskikh ◽  
R. Evans ◽  
G. McConville ◽  
G. L. Manney ◽  
H. E. Rieder

Abstract. Continuous measurements of total ozone (by Dobson spectrophotometers) across the contiguous United States (US) began in the early 1960s. Here, we analyze temporal and spatial variability and trends in total ozone from the five US sites with long-term records. While similar long-term ozone changes are detected at all five sites, we find differences in the patterns of ozone variability on shorter time scales. In addition to standard evaluation techniques, STL-decomposition methods (Seasonal Trend decomposition of time series based on LOcally wEighted Scatterplot Smoothing, LOESS) are used to address temporal variability and trends in the Dobson data. The LOESS-smoothed trend components show a decline of total ozone between the 1970s and 2000s and a "stabilization" at lower levels in recent years, which is also confirmed by linear trend analysis. Methods from statistical extreme value theory (EVT) are used to characterize days with high and low total ozone (termed EHOs and ELOs, respectively) at each station and to analyze temporal changes in the frequency of ozone extremes and their relationship to dynamical features such as the North Atlantic Oscillation and El Niño Southern Oscillation. A comparison of the "fingerprints" detected in the frequency distribution of the extremes with those for standard metrics (i.e., the mean) shows that more "fingerprints" are found for the extremes, particularly for the positive phase of the NAO, at all five US monitoring sites. Results from the STL-decomposition support the findings of the EVT analysis. Finally, we analyze the relative influence of low and high ozone events on seasonal mean column ozone at each station. The results show that the influence of ELOs and EHOs on seasonal mean column ozone can be as much as ±5%, or about twice as large as the overall long-term decadal ozone trends.


2011 ◽  
Vol 8 (6) ◽  
pp. 11233-11275
Author(s):  
P. De Vita ◽  
V. Allocca ◽  
F. Manna ◽  
S. Fabbrocino

Abstract. Climate change is one of the issues most debated by the scientific community with a special focus to the combined effects of anthropogenic modifications of the atmosphere and the natural climatic cycles. Various scenarios have been formulated in order to forecast the global atmospheric circulation and consequently the variability of the global distribution of air temperature and rainfall. The effects of climate change have been analysed with respect to the risks of desertification, droughts and floods, remaining mainly limited to the atmospheric and surface components of the hydrologic cycle. Consequently the impact of the climate change on the recharge of regional aquifers and on the groundwater circulation is still a challenging topic especially in those areas whose aqueduct systems depend basically on springs or wells, such as the Campania region (Southern Italy). In order to analyse the long-term climatic variability and its influence on groundwater circulation, we analysed decadal patterns of precipitation, air temperature and spring discharges in the Campania region (Southern Italy), coupled with the North Atlantic Oscillation (NAO). The time series of precipitation and air temperature were gathered over 90 yr, in the period from 1921 to 2010, choosing 18 rain gauges and 9 air temperature stations among those with the most continuous functioning as well as arranged in a homogeneous spatial distribution. Moreover, for the same period, we gathered the time series of the winter NAO index (December to March mean) and of the discharges of the Sanità spring, belonging to an extended carbonate aquifer (Cervialto Mount) located in the central-eastern area of the Campania region, as well as of two other shorter time series of spring discharges. The hydrogeological features of this aquifer, its relevance due to the feeding of an important regional aqueduct system, as well as the unique availability of a long-lasting time series of spring discharges, allowed us to consider it as an ideal test site, representative of the other carbonate aquifers in the Campania region. The time series of regional normalised indexes of mean annual precipitation, mean annual air temperature and mean annual effective precipitation, as well as the time series of the normalised annual discharge index were calculated. Different methods were applied to analyse the time series: long-term trend analysis, through smoothing numerical techniques, cross-correlation and Fourier analysis. The investigation of the normalised indexes has highlighted long-term complex periodicities, strongly correlated with the winter NAO index. Moreover, we also found robust correlations among precipitation indexes and the annual discharge index, as well as between the latter and the NAO index itself. Although the effects of the North Atlantic Oscillation had already been proved on long-term precipitation and streamflow patterns of different European countries and Mediterranean areas, the results obtained appear original because they establish a link between a large-scale atmospheric cycle and the groundwater circulation of regional aquifers. Therefore, we demonstrated that the winter NAO index can be considered as an effective proxy to forecast the decadal variability of groundwater circulation in Mediterranean areas and in estimating critical scenarios for the feeding of aqueduct systems.


2011 ◽  
Vol 1 (32) ◽  
pp. 1
Author(s):  
Grzegorz Marcin Rozynski ◽  
Zbigniew Pruszak

Long-term growth of storminess of the Baltic Sea near Poland has been identified for autumn and winter months, particularly for January. This growth is concurrent with the increase of westerly waves in Jan., Feb. and Oct. A vivid relationship between the North Atlantic Oscillation and significant wave height Hs in Jan. suggests it can be a potential driver of storminess growth in that month. For Feb. this relationship is unstable; other months demonstrate no connection toward the NAO. The wave climate in January also exhibits a strong 8-year cycle, very likely to drive 8-year variations of shoreline position, detected previously at a study site. The influence of NAO may manifest an unfavorable regime change in which mightier winter storms will be mostly occurring above freezing in the absence of ice cover. Without that cover vulnerable sandy beaches will be exposed to accelerated erosion from direct and stronger wave attack.


Sign in / Sign up

Export Citation Format

Share Document