scholarly journals A dimensionless approach for the runoff peak assessment: effects of the rainfall event structure

2018 ◽  
Vol 22 (2) ◽  
pp. 943-956 ◽  
Author(s):  
Ilaria Gnecco ◽  
Anna Palla ◽  
Paolo La Barbera

Abstract. The present paper proposes a dimensionless analytical framework to investigate the impact of the rainfall event structure on the hydrograph peak. To this end a methodology to describe the rainfall event structure is proposed based on the similarity with the depth–duration–frequency (DDF) curves. The rainfall input consists of a constant hyetograph where all the possible outcomes in the sample space of the rainfall structures can be condensed. Soil abstractions are modelled using the Soil Conservation Service method and the instantaneous unit hydrograph theory is undertaken to determine the dimensionless form of the hydrograph; the two-parameter gamma distribution is selected to test the proposed methodology. The dimensionless approach is introduced in order to implement the analytical framework to any study case (i.e. natural catchment) for which the model assumptions are valid (i.e. linear causative and time-invariant system). A set of analytical expressions are derived in the case of a constant-intensity hyetograph to assess the maximum runoff peak with respect to a given rainfall event structure irrespective of the specific catchment (such as the return period associated with the reference rainfall event). Looking at the results, the curve of the maximum values of the runoff peak reveals a local minimum point corresponding to the design hyetograph derived according to the statistical DDF curve. A specific catchment application is discussed in order to point out the dimensionless procedure implications and to provide some numerical examples of the rainfall structures with respect to observed rainfall events; finally their effects on the hydrograph peak are examined.

2017 ◽  
Author(s):  
Ilaria Gnecco ◽  
Anna Palla ◽  
Paolo La Barbera

Abstract. The present paper proposes a dimensionless analytical framework to predict the hydrologic response of a given catchment thus assessing the impact of the rainfall event structure on the runoff peak. The dimensionless form of the rainfall depth is described as a simple power function of the dimensionless duration. Soil abstractions are modelled using the Soil Conservation Service method and the Instantaneous Unit Hydrograph theory is undertaken to determine the dimensionless form of the hydrograph; the two-parameter gamma-distribution is selected to test the proposed methodology. A set of analytical expressions are derived in case of constant-intensity hyetograph to assess the highest runoff peak with respect to a given rainfall event structure irrespective of the specific catchment. Looking at the results, the curve of the highest values of the runoff peak reveals a local minimum point in the neighbourhood of d* and n values equal to 1 and 0.3, respectively. As an example, the proposed approach has been applied to analyse the hydrologic response of a small Mediterranean catchment to three observed rainfall events characterized by different rainfall internal structures.


2019 ◽  
Vol 10 (11) ◽  
pp. 1131-1135
Author(s):  
Tomas Hambili Paulo Sanjuluca ◽  
◽  
Ricardo Correia ◽  
Anabela Antunes de Almeida ◽  
Ana Gloria Diaz Martinez ◽  
...  

Introduction: In order to have a good assessment of the quality of maternal and child health care, it is essential that there is up-to-date and reliable information. Objective: To evaluate the impact of the implementation of a computerized database of clinical processes in the admission, archive and medical statistics section, of Maternity hospital Irene Neto/Lubango-Angola. Methodology: A descriptive study with a quantitative and qualitative approach to carry out a retrospective case study deliveries and newborns, records from 2014 to 2017. Final considerations: The implementation of this project may contribute to the improvement of clinical management support management of the hospital as well as facilitating access to information for research and scientific production.


2018 ◽  
Author(s):  
Emmanuel Owusu-Kwarteng ◽  
Prince Opoku ◽  
Gershon Dagba ◽  
Mark Amankwa

2019 ◽  
Vol 11 (02) ◽  
pp. 1950019 ◽  
Author(s):  
Lin Gan ◽  
He Zhang ◽  
Cheng Zhou ◽  
Lin Liu

Rotating scanning motor is the important component of synchronous scanning laser fuze. High emission overload environment in the conventional ammunition has a serious impact on the reliability of the motor. Based on the theory that the buffer pad can attenuate the impact stress wave, a new motor buffering Isolation Method is proposed. The dynamical model of the new buffering isolation structure is established by ANSYS infinite element analysis software to do the nonlinear impact dynamics simulation of rotating scanning motor. The effectiveness of Buffering Isolation using different materials is comparatively analyzed. Finally, the Macht hammer impact experiment is done, the results show that in the experience of the 70,000[Formula: see text]g impact acceleration, the new buffering Isolation method can reduce the impact load about 15 times, which can effectively alleviate the plastic deformation of rotational scanning motor and improve the reliability of synchronization scanning system. A new method and theoretical basis of anti-high overload research for Laser Fuze is presented.


1986 ◽  
Vol 18 (9) ◽  
pp. 1189-1207
Author(s):  
B Ó Huallacháin

The conventional approach to assessing structural change in regional input – output tables is to measure the impact of coefficient change on the estimation of outputs and multipliers. The methods developed and tested in this paper focus exclusively on the coefficients. Univariate and multivariate statistical analyses can be used to identify and measure various types of changes ranging from coefficient instability to changes in interindustry relationships as a system. A distinction is made between structural changes in input relationships and those in output relationships. The methods are tested by using Washington State data for the years 1963 and 1967. The results are compared with previous analyses of change in these data.


Water ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 105
Author(s):  
Argelia E. Rascón-Ramos ◽  
Martín Martínez-Salvador ◽  
Gabriel Sosa-Pérez ◽  
Federico Villarreal-Guerrero ◽  
Alfredo Pinedo-Alvarez ◽  
...  

Understanding soil moisture behavior in semi-dry forests is essential for evaluating the impact of forest management on water availability. The objective of the study was to analyze soil moisture based in storm observations in three micro-catchments (0.19, 0.20, and 0.27 ha) with similar tree densities, and subject to different thinning intensities in a semi-dry forest in Chihuahua, Mexico. Vegetation, soil characteristics, precipitation, and volumetric water content were measured before thinning (2018), and after 0%, 40%, and 80% thinning for each micro-catchment (2019). Soil moisture was low and relatively similar among the three micro-catchments in 2018 (mean = 8.5%), and only large rainfall events (>30 mm) increased soil moisture significantly (29–52%). After thinning, soil moisture was higher and significantly different among the micro-catchments only during small rainfall events (<10 mm), while a difference was not noted during large events. The difference before–after during small rainfall events was not significant for the control (0% thinning); whereas 40% and 80% thinning increased soil moisture significantly by 40% and 53%, respectively. Knowledge of the response of soil moisture as a result of thinning and rainfall characteristics has important implications, especially for evaluating the impact of forest management on water availability.


2021 ◽  
Vol 128 (1) ◽  
Author(s):  
Michael J. Negus ◽  
Matthew R. Moore ◽  
James M. Oliver ◽  
Radu Cimpeanu

AbstractThe high-speed impact of a droplet onto a flexible substrate is a highly non-linear process of practical importance, which poses formidable modelling challenges in the context of fluid–structure interaction. We present two approaches aimed at investigating the canonical system of a droplet impacting onto a rigid plate supported by a spring and a dashpot: matched asymptotic expansions and direct numerical simulation (DNS). In the former, we derive a generalisation of inviscid Wagner theory to approximate the flow behaviour during the early stages of the impact. In the latter, we perform detailed DNS designed to validate the analytical framework, as well as provide insight into later times beyond the reach of the proposed analytical model. Drawing from both methods, we observe the strong influence that the mass of the plate, resistance of the dashpot, and stiffness of the spring have on the motion of the solid, which undergo forced damped oscillations. Furthermore, we examine how the plate motion affects the dynamics of the droplet, predominantly through altering its internal hydrodynamic pressure distribution. We build on the interplay between these techniques, demonstrating that a hybrid approach leads to improved model and computational development, as well as result interpretation, across multiple length and time scales.


2021 ◽  
Vol 15 ◽  
pp. 174830262110080
Author(s):  
Changjun Zha* ◽  
Qian Zhang* ◽  
Huimin Duan

Traditional single-pixel imaging systems are aimed mainly at relatively static or slowly changing targets. When there is relative motion between the imaging system and the target, sizable deviations between the measurement values and the real values can occur and result in poor image quality of the reconstructed target. To solve this problem, a novel dynamic compressive imaging system is proposed. In this system, a single-column digital micro-mirror device is used to modulate the target image, and the compressive measurement values are obtained for each column of the image. Based on analysis of the measurement values, a new recovery model of dynamic compressive imaging is given. Differing from traditional reconstruction results, the measurement values of any column of vectors in the target image can be used to reconstruct the vectors of two adjacent columns at the same time. Contingent upon characteristics of the results, a method of image quality enhancement based on an overlapping average algorithm is proposed. Simulation experiments and analysis show that the proposed dynamic compressive imaging can effectively reconstruct the target image; and that when the moving speed of the system changes within a certain range, the system reconstructs a better original image. The system overcomes the impact of dynamically changing speeds, and affords significantly better performance than traditional compressive imaging.


Sign in / Sign up

Export Citation Format

Share Document