scholarly journals Potential application of hydrological ensemble prediction in forecasting floods and its components over the Yarlung Zangbo River basin, China

2019 ◽  
Vol 23 (8) ◽  
pp. 3335-3352 ◽  
Author(s):  
Li Liu ◽  
Yue Ping Xu ◽  
Su Li Pan ◽  
Zhi Xu Bai

Abstract. In recent year, floods becomes a serious issue in the Tibetan Plateau (TP) due to climate change. Many studies have shown that ensemble flood forecasting based on numerical weather predictions can provide an early warning with extended lead time. However, the role of hydrological ensemble prediction in forecasting flood volume and its components over the Yarlung Zangbo River (YZR) basin, China, has not been investigated. This study adopts the variable infiltration capacity (VIC) model to forecast the annual maximum floods and annual first floods in the YZR based on precipitation and the maximum and minimum temperature from the European Centre for Medium-Range Weather Forecasts (ECMWF). N simulations are proposed to account for parameter uncertainty in VIC. Results show that when trade-offs between multiple objectives are significant, N simulations are recommended for better simulation and forecasting. This is why better results are obtained for the Nugesha and Yangcun stations. Our ensemble flood forecasting system can skillfully predict the maximum floods with a lead time of more than 10 d and can predict about 7 d ahead for meltwater-related components. The accuracy of forecasts for the first floods is inferior, with a lead time of only 5 d. The base-flow components for the first floods are insensitive to lead time, except at the Nuxia station, whilst for the maximum floods an obvious deterioration in performance with lead time can be recognized. The meltwater-induced surface runoff is the most poorly captured component by the forecast system, and the well-predicted rainfall-related components are the major contributor to good performance. The performance in 7 d accumulated flood volumes is better than the peak flows.

2018 ◽  
Author(s):  
Li Liu ◽  
Su L. Pan ◽  
Zhi X. Bai ◽  
Yue P. Xu

Abstract. In recent year, flood becomes a serious issue in Tibetan Plateau (TP) due to climate change. Many studies have shown that ensemble flood forecasting based on numerical weather predictions can provide early warning with extended lead time. However, the role of hydrological ensemble prediction in forecasting flood volume and its components over the Yarlung Zangbo River Basin (YZR), China has not been systematically investigated. This study adopts Variable Infiltration Capacity (VIC) model to forecast annual maximum floods (MF) and annual first floods (FF) in YZR based on precipitation, maximum and minimum temperature from European Centre for Medium-Range Weather Forecasts (ECMWF). N-simulations is proposed to account for more scenarios of parameters in VIC and shows improved flood simulation. Ensemble flood forecasting system can skilfully predict MF with a lead time of more than10 days, and has skill in forecasting the snowmelt-related components in about 7 days ahead. The accuracy of forecasts for FF is inferior with a lead time of only 5 days. The performance in 7-day accumulated flood volumes is better than the peak flows. The components in baseflow for FF are irrelevant to lead time, whilst for MF an obvious deterioration in performance with lead time can be perceived. The snowmelt-induced surface runoff is the most poorly captured component by the system, and the well-predicted rainfall-related components are the major contributor for good performance. From this study, it is concluded that snowmelt-induced flood volume plays an important role in YZR Basin especially in FF.


AI Magazine ◽  
2016 ◽  
Vol 37 (2) ◽  
pp. 63-75
Author(s):  
Sathappan Muthiah ◽  
Bert Huang ◽  
Jaime Arredondo ◽  
David Mares ◽  
Lise Getoor ◽  
...  

Civil unrest events (protests, strikes, and “occupy” events) are common occurrences in both democracies and authoritarian regimes. The study of civil unrest is a key topic for political scientists as it helps capture an important mechanism by which citizenry express themselves. In countries where civil unrest is lawful, qualitative analysis has revealed that more than 75 percent of the protests are planned, organized, or announced in advance; therefore detecting references to future planned events in relevant news and social media is a direct way to develop a protest forecasting system. We report on a system for doing that in this article. It uses a combination of keyphrase learning to identify what to look for, probabilistic soft logic to reason about location occurrences in extracted results, and time normalization to resolve future time mentions. We illustrate the application of our system to 10 countries in Latin America: Argentina, Brazil, Chile, Colombia, Ecuador, El Salvador, Mexico, Paraguay, Uruguay, and Venezuela. Results demonstrate our successes in capturing significant societal unrest in these countries with an average lead time of 4.08 days. We also study the selective superiorities of news media versus social media (Twitter, Facebook) to identify relevant trade-offs.


2021 ◽  
Vol 13 (21) ◽  
pp. 4459
Author(s):  
Aline Falck ◽  
Javier Tomasella ◽  
Fabrice Papa

This study investigates the potential of observations with improved frequency and latency time of upcoming altimetry missions on the accuracy of flood forecasting and early warnings. To achieve this, we assessed the skill of the forecasts of a distributed hydrological model by assimilating different historical discharge time frequencies and latencies in a framework that mimics an operational forecast system, using the European Ensemble Forecasting system as the forcing. Numerical experiments were performed in 22 sub-basins of the Tocantins-Araguaia Basin. Forecast skills were evaluated in terms of the Relative Operational Characteristics (ROC) as a function of the drainage area and the forecasts’ lead time. The results showed that increasing the frequency of data collection and reducing the latency time (especially 1 d update and low latency) had a significant impact on steep headwater sub-basins, where floods are usually more destructive. In larger basins, although the increased frequency of data collection improved the accuracy of the forecasts, the potential benefits were limited to the earlier lead times.


2009 ◽  
Vol 137 (4) ◽  
pp. 1480-1492 ◽  
Author(s):  
Frédéric Vitart ◽  
Franco Molteni

Abstract The 15-member ensembles of 46-day dynamical forecasts starting on each 15 May from 1991 to 2007 have been produced, using the ECMWF Variable Resolution Ensemble Prediction System monthly forecasting system (VarEPS-monthy). The dynamical model simulates a realistic interannual variability of Indian precipitation averaged over the month of June. It also displays some skill to predict Indian precipitation averaged over pentads up to a lead time of about 30 days. This skill exceeds the skill of the ECMWF seasonal forecasting System 3 starting on 1 June. Sensitivity experiments indicate that this is likely due to the higher horizontal resolution of VarEPS-monthly. Another series of sensitivity experiments suggests that the ocean–atmosphere coupling has an important impact on the skill of the monthly forecasting system to predict June rainfall over India.


2018 ◽  
Vol 18 (8) ◽  
pp. 2183-2202 ◽  
Author(s):  
Ekrem Canli ◽  
Martin Mergili ◽  
Benni Thiebes ◽  
Thomas Glade

Abstract. Landslide forecasting and early warning has a long tradition in landslide research and is primarily carried out based on empirical and statistical approaches, e.g., landslide-triggering rainfall thresholds. In the last decade, flood forecasting started the operational mode of so-called ensemble prediction systems following the success of the use of ensembles for weather forecasting. These probabilistic approaches acknowledge the presence of unavoidable variability and uncertainty when larger areas are considered and explicitly introduce them into the model results. Now that highly detailed numerical weather predictions and high-performance computing are becoming more common, physically based landslide forecasting for larger areas is becoming feasible, and the landslide research community could benefit from the experiences that have been reported from flood forecasting using ensemble predictions. This paper reviews and summarizes concepts of ensemble prediction in hydrology and discusses how these could facilitate improved landslide forecasting. In addition, a prototype landslide forecasting system utilizing the physically based TRIGRS (Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability) model is presented to highlight how such forecasting systems could be implemented. The paper concludes with a discussion of challenges related to parameter variability and uncertainty, calibration and validation, and computational concerns.


2018 ◽  
Vol 22 (3) ◽  
pp. 2023-2039 ◽  
Author(s):  
Shaun Harrigan ◽  
Christel Prudhomme ◽  
Simon Parry ◽  
Katie Smith ◽  
Maliko Tanguy

Abstract. Skilful hydrological forecasts at sub-seasonal to seasonal lead times would be extremely beneficial for decision-making in water resources management, hydropower operations, and agriculture, especially during drought conditions. Ensemble streamflow prediction (ESP) is a well-established method for generating an ensemble of streamflow forecasts in the absence of skilful future meteorological predictions, instead using initial hydrologic conditions (IHCs), such as soil moisture, groundwater, and snow, as the source of skill. We benchmark when and where the ESP method is skilful across a diverse sample of 314 catchments in the UK and explore the relationship between catchment storage and ESP skill. The GR4J hydrological model was forced with historic climate sequences to produce a 51-member ensemble of streamflow hindcasts. We evaluated forecast skill seamlessly from lead times of 1 day to 12 months initialized at the first of each month over a 50-year hindcast period from 1965 to 2015. Results showed ESP was skilful against a climatology benchmark forecast in the majority of catchments across all lead times up to a year ahead, but the degree of skill was strongly conditional on lead time, forecast initialization month, and individual catchment location and storage properties. UK-wide mean ESP skill decayed exponentially as a function of lead time with continuous ranked probability skill scores across the year of 0.75, 0.20, and 0.11 for 1-day, 1-month, and 3-month lead times, respectively. However, skill was not uniform across all initialization months. For lead times up to 1 month, ESP skill was higher than average when initialized in summer and lower in winter months, whereas for longer seasonal and annual lead times skill was higher when initialized in autumn and winter months and lowest in spring. ESP was most skilful in the south and east of the UK, where slower responding catchments with higher soil moisture and groundwater storage are mainly located; correlation between catchment base flow index (BFI) and ESP skill was very strong (Spearman's rank correlation coefficient =0.90 at 1-month lead time). This was in contrast to the more highly responsive catchments in the north and west which were generally not skilful at seasonal lead times. Overall, this work provides scientific justification for when and where use of such a relatively simple forecasting approach is appropriate in the UK. This study, furthermore, creates a low cost benchmark against which potential skill improvements from more sophisticated hydro-meteorological ensemble prediction systems can be judged.


2016 ◽  
Vol 11 (6) ◽  
pp. 1032-1039 ◽  
Author(s):  
Tomoki Ushiyama ◽  
◽  
Takahiro Sayama ◽  
Yoichi Iwami ◽  
◽  
...  

In order to be able to issue flood warnings not hours but days in advance, numerical weather prediction (NWP) is essential to the forecasting of flood-producing rainfall. The regional ensemble prediction system (EPS), advanced NWP on a local scale, has a high potential to improve flood forecasting through the quantitative prediction of precipitation. In this study, the predictability of floods using the ensemble flood forecasting system, which is composed of regional EPS and a distributed hydrological model, was investigated. Two flood events which took place in a small basin in Japan in 2010 and which were caused by typhoons Talas and Roke were examined. As the forecasting system predicted the probability of flood occurrence at least 24 h beforehand in the case of both typhoons, these forecasts were better than deterministic forecasts. However, the system underestimated the peak of the flooding in the typhoon Roke event, and it was too early in its prediction of the appearance of the peak of the flooding in the Talas event. Although the system has its limitations, it has proved to have the potential to produce early flood warnings.


2015 ◽  
Vol 19 (8) ◽  
pp. 3365-3385 ◽  
Author(s):  
V. Thiemig ◽  
B. Bisselink ◽  
F. Pappenberger ◽  
J. Thielen

Abstract. The African Flood Forecasting System (AFFS) is a probabilistic flood forecast system for medium- to large-scale African river basins, with lead times of up to 15 days. The key components are the hydrological model LISFLOOD, the African GIS database, the meteorological ensemble predictions by the ECMWF (European Centre for Medium-Ranged Weather Forecasts) and critical hydrological thresholds. In this paper, the predictive capability is investigated in a hindcast mode, by reproducing hydrological predictions for the year 2003 when important floods were observed. Results were verified by ground measurements of 36 sub-catchments as well as by reports of various flood archives. Results showed that AFFS detected around 70 % of the reported flood events correctly. In particular, the system showed good performance in predicting riverine flood events of long duration (> 1 week) and large affected areas (> 10 000 km2) well in advance, whereas AFFS showed limitations for small-scale and short duration flood events. The case study for the flood event in March 2003 in the Sabi Basin (Zimbabwe) illustrated the good performance of AFFS in forecasting timing and severity of the floods, gave an example of the clear and concise output products, and showed that the system is capable of producing flood warnings even in ungauged river basins. Hence, from a technical perspective, AFFS shows a large potential as an operational pan-African flood forecasting system, although issues related to the practical implication will still need to be investigated.


Sign in / Sign up

Export Citation Format

Share Document