scholarly journals The role of dew and radiation fog inputs in the local water cycling of a temperate grassland during dry spells in central Europe

2021 ◽  
Vol 25 (5) ◽  
pp. 2617-2648
Author(s):  
Yafei Li ◽  
Franziska Aemisegger ◽  
Andreas Riedl ◽  
Nina Buchmann ◽  
Werner Eugster

Abstract. During dry spells, non-rainfall water (hereafter NRW) mostly formed from dew and fog potentially plays an increasingly important role in temperate grassland ecosystems with ongoing global warming. Dew and radiation fog occur in combination during clear and calm nights, and both use ambient water vapor as a source. Research on the combined mechanisms involved in NRW inputs to ecosystems is rare, and distillation of water vapor from the soil as a NRW input pathway for dew formation has hardly been studied. Furthermore, eddy covariance (EC) measurements are associated with large uncertainties on clear, calm nights when dew and radiation fog occur. The aim of this paper is thus to use stable isotopes as tracers to investigate the different NRW input pathways into a temperate Swiss grassland at Chamau during dry spells in summer 2018. Stable isotopes provide additional information on the pathways from water vapor to liquid water (dew and fog) that cannot be measured otherwise. We measured the isotopic composition (δ18O, δ2H, and d=δ2H-8⋅δ18O) of ambient water vapor, NRW droplets on leaf surfaces, and soil moisture and combined them with EC and meteorological observations during one dew-only and two combined dew and radiation fog events. The ambient water vapor d was found to be strongly linked with local surface relative humidity (r=-0.94), highlighting the dominant role of local moisture as a source for ambient water vapor in the synoptic context of the studied dry spells. Detailed observations of the temporal evolution of the ambient water vapor and foliage NRW isotopic signals suggest two different NRW input pathways: (1) the downward pathway through the condensation of ambient water vapor and (2) the upward pathway through the distillation of water vapor from soil onto foliage. We employed a simple two-end-member mixing model using δ18O and δ2H to quantify the NRW inputs from these two different sources. With this approach, we found that distillation contributed 9 %–42 % to the total foliage NRW, which compares well with estimates derived from a near-surface vertical temperature gradient method proposed by Monteith in 1957. The dew and radiation fog potentially produced 0.17–0.54 mm d−1 NRW gain on foliage, thereby constituting a non-negligible water flux to the canopy, as compared to the evapotranspiration of 2.7 mm d−1. Our results thus underline the importance of NRW inputs to temperate grasslands during dry spells and reveal the complexity of the local water cycle in such conditions, including different pathways of dew and radiation fog water inputs.

2020 ◽  
Author(s):  
Yafei Li ◽  
Franziska Aemisegger ◽  
Andreas Riedl ◽  
Nina Buchmann ◽  
Werner Eugster

Abstract. In a warmer climate, non-rainfall water (hereafter NRW) formed from dew and fog potentially plays an increasingly important role in temperate grassland ecosystems under the scarcity of precipitation over prolonged periods. Dew and radiation fog occur in combination during clear and calm nights, and both use ambient water vapor as a source. Research on the combined mechanisms involved in NRW inputs to ecosystems are rare, and the condensation of soil-diffusing vapor, as one of the NRW input pathways for dew formation, has hardly been studied at all. The aim of this paper is thus to investigate the different NRW input pathways into a temperate Swiss grassland at Chamau during prolonged dry periods in summer 2018. We measured the isotopic compositions (δ18O, δ2H, and d = δ2H − 8 · δ18O) of both ambient water vapor and the NRW droplets on leaf surfaces combined with eddy covariance and meteorological measurements during one dew-only and two combined dew and radiation fog events. We employed a simple two end-member mixing model using δ18O and δ2H to split the dew input pathways from different sources. Our results showed a decrease of 0.8–5.5 mmol mol−1 in volumetric water vapor mixing ratio and a decrease of 4.8–16.7 ‰ in ambient water vapor δ2H due to dew formation and radiation fog droplet deposition. A nighttime maximum in ambient water vapor δ18O (−15.5 ‰ to −14.3 ‰) and a 3.4–3.7 ‰ decrease in ambient water vapor d were observed for dew formation in unsaturated conditions. In conditions of slight super-saturation, a stronger decrease of ambient water vapor δ18O (0.3–1.5 ‰) and a minimum of ambient water vapor d (−6.0 ‰ to −4.7 ‰) were observed. The combined foliage NRW and ambient water vapor δ18O and δ2H suggested two different input pathways: (1) condensation of ambient water vapor and (2) of soil-diffusing vapor. The latter contributed 9–42 % to the total foliage NRW. The dew and radiation fog potentially produced 0.06–0.39 mm night−1 NRW gain on foliage, which was comparable with 2.8 mm day−1 daytime evapotranspiration. The ambient water vapor d was correlated and anti-correlated with ambient temperature and ambient relative humidity respectively, suggesting an only minor influence of large-scale air advection and highlighted the dominant role of local moisture as a source for ambient water vapor. Our results thus highlight the importance of NRW inputs to temperate grasslands during prolonged dry periods and reveal the complexity of the local water cycle in such conditions including different pathways of water deposition.


Author(s):  
Terence J. Pagano ◽  
Duane E. Waliser ◽  
Bin Guan ◽  
Hengchun Ye ◽  
F. Martin Ralph ◽  
...  

AbstractAtmospheric rivers (ARs) are long and narrow regions of strong horizontal water vapor transport. Upon landfall, ARs are typically associated with heavy precipitation and strong surface winds. A quantitative understanding of the atmospheric conditions that favor extreme surface winds during ARs has implications for anticipating and managing various impacts associated with these potentially hazardous events. Here, a global AR database (1999–2014) with relevant information from MERRA-2 reanalysis, QuikSCAT and AIRS satellite observations are used to better understand and quantify the role of near-surface static stability in modulating surface winds during landfalling ARs. The temperature difference between the surface and 1 km MSL (ΔT; used here as a proxy for near-surface static stability), and integrated water vapor transport (IVT) are analyzed to quantify their relationships to surface winds using bivariate linear regression. In four regions where AR landfalls are common, the MERRA-2-based results indicate that IVT accounts for 22-38% of the variance in surface wind speed. Combining ΔT with IVT increases the explained variance to 36-52%. Substitution of QuikSCAT surface winds and AIRS ΔT in place of the MERRA-2 data largely preserves this relationship (e.g., 44% compared to 52% explained variance for USA West Coast). Use of an alternate static stability measure–the bulk Richardson number–yields a similar explained variance (47%). Lastly, AR cases within the top and bottom 25% of near-surface static stability indicate that extreme surface winds (gale or higher) are more likely to occur in unstable conditions (5.3%/14.7% during weak/strong IVT) than in stable conditions (0.58%/6.15%).


2015 ◽  
Vol 15 (6) ◽  
pp. 7895-7932 ◽  
Author(s):  
C. Rolf ◽  
A. Afchine ◽  
H. Bozem ◽  
B. Buchholz ◽  
V. Ebert ◽  
...  

Abstract. Dehydration in the Antarctic winter stratosphere is a well-known phenomenon that is occasionally observed by balloon-borne and satellite measurements. However, in-situ measurements of dehydration in the Antarctic vortex are very rare. Here, we present detailed observations with the in-situ and GLORIA remote sensing instrument payload aboard the new German aircraft HALO. Strongly dehydrated air masses down to 1.6 ppmv of water vapor were observed as far north as 47° S and between 12 and 13 km in altitude, which has never been observed by satellites. The dehydration can be traced back to individual ice formation events, where ice crystals sedimented out and water vapor was irreversibly removed. Within these dehydrated stratospheric air masses, filaments of moister air reaching down to the tropopause are detected with the high resolution limb sounder, GLORIA. Furthermore, dehydrated air masses are observed with GLORIA in the Antarctic troposphere down to 7 km. With the help of a backward trajectory analysis, a tropospheric origin of the moist filaments in the vortex can be identified, while the dry air masses in the troposphere have stratospheric origins. The transport pathways of Antarctic stratosphere/troposphere exchange are investigated and the irrelevant role of the Antarctic thermal tropopause as a transport barrier is confirmed. Further, it is shown that the exchange process can be attributed to several successive Rossby wave events in combination with an isentropic interchange of air masses across the weak tropopause and subsequent subsidence due to radiative cooling. Once transported to the troposphere, air masses with stratospheric origin are able to reach near-surface levels within 1–2 months.


1983 ◽  
Vol 23 ◽  
Author(s):  
G.J. Galvin ◽  
L.S. Hung ◽  
J.W. Mayer ◽  
M. Nastasi

ABSTRACTEnergetic ion beams used outside the traditional role of ion implantation are considered for semiconductor applications involving interface modification for self-aligned silicide contacts, composition modification for formation of buried oxide layers in Si on insulator structures and reduced disorder in high energy ion beam annealing for buried collectors in transistor fabrication. In metals, aside from their use in modification of the composition of near surface regions, energetic ion beams are being investigated for structural modification in crystalline to amorphous transitions. Pulsed beams of photons and electrons are used as directed energy sources in rapid solidification. Here, we consider the role of temperature gradients and impurities in epitaxial growth of silicon.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jennifer A. MacKinnon ◽  
Harper L. Simmons ◽  
John Hargrove ◽  
Jim Thomson ◽  
Thomas Peacock ◽  
...  

AbstractUnprecedented quantities of heat are entering the Pacific sector of the Arctic Ocean through Bering Strait, particularly during summer months. Though some heat is lost to the atmosphere during autumn cooling, a significant fraction of the incoming warm, salty water subducts (dives beneath) below a cooler fresher layer of near-surface water, subsequently extending hundreds of kilometers into the Beaufort Gyre. Upward turbulent mixing of these sub-surface pockets of heat is likely accelerating sea ice melt in the region. This Pacific-origin water brings both heat and unique biogeochemical properties, contributing to a changing Arctic ecosystem. However, our ability to understand or forecast the role of this incoming water mass has been hampered by lack of understanding of the physical processes controlling subduction and evolution of this this warm water. Crucially, the processes seen here occur at small horizontal scales not resolved by regional forecast models or climate simulations; new parameterizations must be developed that accurately represent the physics. Here we present novel high resolution observations showing the detailed process of subduction and initial evolution of warm Pacific-origin water in the southern Beaufort Gyre.


2014 ◽  
Vol 455 (1-3) ◽  
pp. 735-738 ◽  
Author(s):  
Makoto Kobayashi ◽  
Hiromichi Uchimura ◽  
Kensuke Toda ◽  
Yasuhisa Oya

Fuel ◽  
2004 ◽  
Vol 83 (6) ◽  
pp. 671-677 ◽  
Author(s):  
Shengji Wu ◽  
Md.Azhar Uddin ◽  
Shinsuke Nagamine ◽  
Eiji Sasaoka

Sign in / Sign up

Export Citation Format

Share Document