scholarly journals The role of dew and radiation fog inputs in the local water cycling of a temperate grassland in Central Europe

2020 ◽  
Author(s):  
Yafei Li ◽  
Franziska Aemisegger ◽  
Andreas Riedl ◽  
Nina Buchmann ◽  
Werner Eugster

Abstract. In a warmer climate, non-rainfall water (hereafter NRW) formed from dew and fog potentially plays an increasingly important role in temperate grassland ecosystems under the scarcity of precipitation over prolonged periods. Dew and radiation fog occur in combination during clear and calm nights, and both use ambient water vapor as a source. Research on the combined mechanisms involved in NRW inputs to ecosystems are rare, and the condensation of soil-diffusing vapor, as one of the NRW input pathways for dew formation, has hardly been studied at all. The aim of this paper is thus to investigate the different NRW input pathways into a temperate Swiss grassland at Chamau during prolonged dry periods in summer 2018. We measured the isotopic compositions (δ18O, δ2H, and d = δ2H − 8 · δ18O) of both ambient water vapor and the NRW droplets on leaf surfaces combined with eddy covariance and meteorological measurements during one dew-only and two combined dew and radiation fog events. We employed a simple two end-member mixing model using δ18O and δ2H to split the dew input pathways from different sources. Our results showed a decrease of 0.8–5.5 mmol mol−1 in volumetric water vapor mixing ratio and a decrease of 4.8–16.7 ‰ in ambient water vapor δ2H due to dew formation and radiation fog droplet deposition. A nighttime maximum in ambient water vapor δ18O (−15.5 ‰ to −14.3 ‰) and a 3.4–3.7 ‰ decrease in ambient water vapor d were observed for dew formation in unsaturated conditions. In conditions of slight super-saturation, a stronger decrease of ambient water vapor δ18O (0.3–1.5 ‰) and a minimum of ambient water vapor d (−6.0 ‰ to −4.7 ‰) were observed. The combined foliage NRW and ambient water vapor δ18O and δ2H suggested two different input pathways: (1) condensation of ambient water vapor and (2) of soil-diffusing vapor. The latter contributed 9–42 % to the total foliage NRW. The dew and radiation fog potentially produced 0.06–0.39 mm night−1 NRW gain on foliage, which was comparable with 2.8 mm day−1 daytime evapotranspiration. The ambient water vapor d was correlated and anti-correlated with ambient temperature and ambient relative humidity respectively, suggesting an only minor influence of large-scale air advection and highlighted the dominant role of local moisture as a source for ambient water vapor. Our results thus highlight the importance of NRW inputs to temperate grasslands during prolonged dry periods and reveal the complexity of the local water cycle in such conditions including different pathways of water deposition.

2021 ◽  
Vol 25 (5) ◽  
pp. 2617-2648
Author(s):  
Yafei Li ◽  
Franziska Aemisegger ◽  
Andreas Riedl ◽  
Nina Buchmann ◽  
Werner Eugster

Abstract. During dry spells, non-rainfall water (hereafter NRW) mostly formed from dew and fog potentially plays an increasingly important role in temperate grassland ecosystems with ongoing global warming. Dew and radiation fog occur in combination during clear and calm nights, and both use ambient water vapor as a source. Research on the combined mechanisms involved in NRW inputs to ecosystems is rare, and distillation of water vapor from the soil as a NRW input pathway for dew formation has hardly been studied. Furthermore, eddy covariance (EC) measurements are associated with large uncertainties on clear, calm nights when dew and radiation fog occur. The aim of this paper is thus to use stable isotopes as tracers to investigate the different NRW input pathways into a temperate Swiss grassland at Chamau during dry spells in summer 2018. Stable isotopes provide additional information on the pathways from water vapor to liquid water (dew and fog) that cannot be measured otherwise. We measured the isotopic composition (δ18O, δ2H, and d=δ2H-8⋅δ18O) of ambient water vapor, NRW droplets on leaf surfaces, and soil moisture and combined them with EC and meteorological observations during one dew-only and two combined dew and radiation fog events. The ambient water vapor d was found to be strongly linked with local surface relative humidity (r=-0.94), highlighting the dominant role of local moisture as a source for ambient water vapor in the synoptic context of the studied dry spells. Detailed observations of the temporal evolution of the ambient water vapor and foliage NRW isotopic signals suggest two different NRW input pathways: (1) the downward pathway through the condensation of ambient water vapor and (2) the upward pathway through the distillation of water vapor from soil onto foliage. We employed a simple two-end-member mixing model using δ18O and δ2H to quantify the NRW inputs from these two different sources. With this approach, we found that distillation contributed 9 %–42 % to the total foliage NRW, which compares well with estimates derived from a near-surface vertical temperature gradient method proposed by Monteith in 1957. The dew and radiation fog potentially produced 0.17–0.54 mm d−1 NRW gain on foliage, thereby constituting a non-negligible water flux to the canopy, as compared to the evapotranspiration of 2.7 mm d−1. Our results thus underline the importance of NRW inputs to temperate grasslands during dry spells and reveal the complexity of the local water cycle in such conditions, including different pathways of dew and radiation fog water inputs.


2015 ◽  
Vol 11 (11) ◽  
pp. 1527-1551 ◽  
Author(s):  
C. Reutenauer ◽  
A. Landais ◽  
T. Blunier ◽  
C. Bréant ◽  
M. Kageyama ◽  
...  

Abstract. δ18O of atmospheric oxygen (δ18Oatm) undergoes millennial-scale variations during the last glacial period, and systematically increases during Heinrich stadials (HSs). Changes in δ18Oatm combine variations in biospheric and water cycle processes. The identification of the main driver of the millennial variability in δ18Oatm is thus not straightforward. Here, we quantify the response of δ18Oatm to such millennial events using a freshwater hosing simulation performed under glacial boundary conditions. Our global approach takes into account the latest estimates of isotope fractionation factor for respiratory and photosynthetic processes and make use of atmospheric water isotope and vegetation changes. Our modeling approach allows to reproduce the main observed features of a HS in terms of climatic conditions, vegetation distribution and δ18O of precipitation. We use it to decipher the relative importance of the different processes behind the observed changes in δ18Oatm. The results highlight the dominant role of hydrology on δ18Oatm and confirm that δ18Oatm can be seen as a global integrator of hydrological changes over vegetated areas.


2018 ◽  
Vol 67 (2) ◽  
pp. 326-347 ◽  
Author(s):  
Laura Jacobs ◽  
Mark Boukes ◽  
Rens Vliegenthart

This study develops a model that contributes to our understanding of the complex relationship between economic motivations and anti-Muslim attitudes by analyzing the underexplored role of news consumption. Using a large-scale Dutch panel dataset ( n = 2694), we test a structural equation model theoretically grounded in group conflict theory, in which the relationship between news consumption and anti-Muslim attitudes is mediated by perceptions and emotions about the economy. Findings offer sound empirical support for the hypothesized model: news consumption increases pessimistic economic perceptions and negative emotions about the economy, which in turn strengthens anti-Muslim attitudes. The mechanism, however, largely depends on the type of news outlet and genre: watching television seems more decisive than reading newspapers; moreover, especially exposure to soft and popular news formats plays a dominant role.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1699 ◽  
Author(s):  
Kumaraswamy Ponnambalam ◽  
S. Jamshid Mousavi

This paper presents basic definitions and challenges/opportunities from different perspectives to study and control water cycle impacts on society and vice versa. The wider and increased interactions and their consequences such as global warming and climate change, and the role of complex institutional- and governance-related socioeconomic-environmental issues bring forth new challenges. Hydrology and integrated water resources management (IWRM from the viewpoint of an engineering planner) do not exclude in their scopes the study of the impact of changes in global hydrology from societal actions and their feedback effects on the local/global hydrology. However, it is useful to have unique emphasis through specialized fields such as hydrosociology (including the society in planning water projects, from the viewpoint of the humanities) and sociohydrology (recognizing the large-scale impacts society has on hydrology, from the viewpoint of science). Global hydrological models have been developed for large-scale hydrology with few parameters to calibrate at local scale, and integrated assessment models have been developed for multiple sectors including water. It is important not to do these studies with a silo mindset, as problems in water and society require highly interdisciplinary skills, but flexibility and acceptance of diverse views will progress these studies and their usefulness to society. To deal with complexities in water and society, systems modeling is likely the only practical approach and is the viewpoint of researchers using coupled human–natural systems (CHNS) models. The focus and the novelty in this paper is to clarify some of these challenges faced in CHNS modeling, such as spatiotemporal scale variations, scaling issues, institutional issues, and suggestions for appropriate mathematical tools for dealing with these issues.


2010 ◽  
Vol 34 (3) ◽  
pp. 265-286 ◽  
Author(s):  
Michael Church

Modern geomorphology was founded in the nineteenth century as an exercise of historical interpretation of landscapes. After the mid-twentieth century it dominantly became a quest to understand the processes by which landscapes are modified. This focused attention on the measurement of sediment fluxes on synoptic timescales and on a reductionist, Newtonian programme of construction of low-order theories about those fluxes, largely imported from engineering science. The period also saw the emergence of an applied geomorphology. Toward the end of the twentieth century the subject was dramatically transformed by improved technologies for remote sensing and surveying of Earth’s surface, the advent of personal computation and of large-scale computation, and important developments of absolute dating techniques. These technical innovations in turn promoted recognition of geomorphology as a ‘system science’ and facilitated the reintegration of tectonics into geomorphology, opening the way for a renewed consideration of the history of the landscape. Finally, increasing recognition of the dominance of human agency in contemporary modification of Earth’s terrestrial surface has become a significant theme. Important influences on the continuing development of the subject will include the search for physically sound laws for material fluxes; reconciling geomorphological information and process representations across spatial and temporal scales, in both observation and theory; comprehending complexity in geomorphological processes and landform histories; incorporating the geomorphological role of living organisms, particularly micro-organisms; understanding the role of climate in geomorphology, both in the contemporary changing climate and in the long term; and fully admitting the now dominant role of humans as geomorphic agents. Geomorphology is simultaneously developing in diverse directions: on one hand, it is becoming a more rigorous geophysical science — a significant part of a larger earth science discipline; on another, it is becoming more concerned with human social and economic values, with environmental change, conservation ethics, with the human impact on environment, and with issues of social justice and equity.


Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 368 ◽  
Author(s):  
Zhixing Xie ◽  
Bo Sun

Intensive snowfall events (ISEs) have a profound impact on the society and economy in China during winter. Considering that the interaction between northerly cold advection and southerly water vapor transport (WVT) is generally an essential condition for the occurrence of ISEs in eastern China, this study investigates the different roles of anomalous southerly WVT and northerly cold advection during the ISEs in the North China (NC) and Yangtze River valley (YRV) regions based on a composite analysis of seventy ISE cases in NC and forty ISE cases in the YRV region from 1961 to 2014. The results indicate that the ISEs in NC are mainly associated with a significant pre-conditioning of water vapor over NC induced by southerly WVT anomalies over eastern China, whereas the ISEs in the YRV region are mainly associated with a strengthened Siberian High (SH) and strong northerly cold advection invading the YRV region. These results suggest a dominant role of anomalous southerly WVT in triggering the ISEs in NC and a dominant role of northerly cold advection in triggering the ISEs in the YRV region. The different roles of anomalous southerly WVT and northerly cold advection in the ISEs over the NC and YRV regions are largely attributed to the different winter climate in the NC and YRV regions—during winter, the NC (YRV) region is dominated by cold and dry (relatively warm and moist) air flow and hence southerly WVT (northerly cold advection) is the key factor for triggering the ISEs in NC (the YRV region).


2005 ◽  
Vol 62 (8) ◽  
pp. 2770-2789 ◽  
Author(s):  
Sandrine Bony ◽  
Kerry A. Emanuel

Abstract Recent observations of the tropical atmosphere reveal large variations of water vapor and clouds at intraseasonal time scales. This study investigates the role of these variations in the large-scale organization of the tropical atmosphere, and in intraseasonal variability in particular. For this purpose, the influence of feedbacks between moisture (water vapor, clouds), radiation, and convection that affect the growth rate and the phase speed of unstable modes of the tropical atmosphere is investigated. Results from a simple linear model suggest that interactions between moisture and tropospheric radiative cooling, referred to as moist-radiative feedbacks, play a significant role in tropical intraseasonal variability. Their primary effect is to reduce the phase speed of large-scale tropical disturbances: by cooling the atmosphere less efficiently during the rising phase of the oscillations (when the atmosphere is moister) than during episodes of large-scale subsidence (when the atmosphere is drier), the atmospheric radiative heating reduces the effective stratification felt by propagating waves and slows down their propagation. In the presence of significant moist-radiative feedbacks, planetary disturbances are characterized by an approximately constant frequency. In addition, moist-radiative feedbacks excite small-scale disturbances advected by the mean flow. The interactions between moisture and convection exert a selective damping effect upon small-scale disturbances, thereby favoring large-scale propagating waves at the expense of small-scale advective disturbances. They also weaken the ability of radiative processes to slow down the propagation of planetary-scale disturbances. This study suggests that a deficient simulation of cloud radiative interactions or of convection-moisture interactions may explain some of the difficulties experienced by general circulation models in simulating tropical intraseasonal oscillations.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 764
Author(s):  
Gábor Corradi ◽  
László Kovács

The present review is intended to interest a broader audience interested in the resolution of the several decades-long controversy on the possible role of oxygen-vacancy defects in LiNbO3. Confronting ideas of a selected series of papers from classical experiments to brand new large-scale calculations, a unified interpretation of the defect generation and annealing mechanisms governing processes during thermo- and mechanochemical treatments and irradiations of various types is presented. The dominant role of as-grown and freshly generated Nb antisite defects as traps for small polarons and bipolarons is demonstrated, while mobile lithium vacancies, also acting as hole traps, are shown to provide flexible charge compensation needed for stability. The close relationship between LiNbO3 and the Li battery materials LiNb3O8 and Li3NbO4 is pointed out. The oxygen sublattice of the bulk plays a much more passive role, whereas oxygen loss and Li2O segregation take place in external or internal surface layers of a few nanometers.


2019 ◽  
Vol 7 (3) ◽  
pp. 105-125
Author(s):  
Elena P. Krasovskaya ◽  
Ho Da

In the article the problems of mastering the binary cycles by J. S. Bach and D. D. Shostakovich included in large-scale polyphonic collections of the composers (“Well-Tempered Clavier” and “Twenty-Four Preludes and Fugues”, opus 87) by the Chinese piano students are considered. It is shown that these problems are caused by the features of the Chinese system of music education based on the characteristic features of national culture (monodiality, the dominant role of the pentatonic-modal system, the intonation dictionary and the logic of the deployment of content, fundamentally different from the European interpretation) and also by a low level of theoretical knowledge of students about polyphonic music and the traditions of its interpretation. According to the authors, an important step to understanding and professional interpreting the polyphonic heritage of the composers by Chinese students may be the intonation, civilized and paradigm-pedagogical approaches. The consistent transition from national patterns of polyphony to European polyphonic works, their study through the prism of the proposed pedagogical approaches allowed students to understand the phenomenon of polyphony in the musical art, to trace traditions and innovations in it. This has a positive effect on mastering polyphonic opuses by students.


Sign in / Sign up

Export Citation Format

Share Document