Applications of Energy Beams in Material and Device Processing

1983 ◽  
Vol 23 ◽  
Author(s):  
G.J. Galvin ◽  
L.S. Hung ◽  
J.W. Mayer ◽  
M. Nastasi

ABSTRACTEnergetic ion beams used outside the traditional role of ion implantation are considered for semiconductor applications involving interface modification for self-aligned silicide contacts, composition modification for formation of buried oxide layers in Si on insulator structures and reduced disorder in high energy ion beam annealing for buried collectors in transistor fabrication. In metals, aside from their use in modification of the composition of near surface regions, energetic ion beams are being investigated for structural modification in crystalline to amorphous transitions. Pulsed beams of photons and electrons are used as directed energy sources in rapid solidification. Here, we consider the role of temperature gradients and impurities in epitaxial growth of silicon.

2006 ◽  
Vol 24 (4) ◽  
pp. 541-551 ◽  
Author(s):  
F. BECKER ◽  
A. HUG ◽  
P. FORCK ◽  
M. KULISH ◽  
P. NI ◽  
...  

An intense and focused heavy ion beam is a suitable tool to generate high energy density in matter. To compare results with simulations it is essential to know beam parameters as intensity, longitudinal, and transversal profile at the focal plane. Since the beam's energy deposition will melt and evaporate even tungsten, non-intercepting diagnostics are required. Therefore a capacitive pickup with high resolution in both time and space was designed, built and tested at the high temperature experimental area at GSI. Additionally a beam induced fluorescence monitor was investigated for the synchrotron's (SIS-18) energy-regime (60–750 AMeV) and successfully tested in a beam-transfer-line.


1995 ◽  
Vol 396 ◽  
Author(s):  
A. Wagner ◽  
P. Blauner ◽  
P. Longo ◽  
S. Cohen

AbstractFocused Ion Beams offer a new method of measuring the size of polymer resist features on integrated circuits. The short penetration range of an ion relative to an electron is shown to offer fundamental advantages for critical dimension (CD) metrology. By confining the polymer damage to the very near surface, ion beams can induce less dimensional change than scanning electron microscopes during the measurement process. This can result in improved CD measurement precision. The erosion rate of polymers to various ion species is also presented, and we show that erosion is non-linear with ion dose. The use of FIB for forming resist cross sections is also demonstrated. An H20 gas assisted etching process for polymers has been developed, and is shown to significantly improve the quality of resist cross sections.


MRS Bulletin ◽  
1996 ◽  
Vol 21 (8) ◽  
pp. 58-62 ◽  
Author(s):  
Harold A. Davis ◽  
Gennady E. Remnev ◽  
Regan W. Stinnett ◽  
Kiyoshi Yatsui

Over the past decade, researchers in Japan, Russia, and the United States have been investigating the application of intense-pulsed-ion-beam (IPIB) technology (which has roots in inertial confinement fusion programs) to the surface treatment and coating of materials. The short range (0.1–10 μm) and high-energy density (1–50 J/cm2) of these short-pulsed (t ≥ 1 μs) beams (with ion currents I = 5–50 kA, and energies E = 100–1,000 keV) make them ideal flash-heat sources to rapidly vaporize or melt the near-surface layer of targets similar to the more familiar pulsed laser deposition (PLD) or laser surface treatment. The vaporized material can form coatings on substrates, and surface melting followed by rapid cooling (109 K/s) can form amorphous layers, dissolve precipitates, and form nonequilibrium microstructures.An advantage of this approach over laser processing is that these beams deliver 0.1–10 KJ per pulse to targets at expected overall electrical efficiencies (i.e., the ratio of extracted ion-beam energy to the total energy consumed in generating the beam) of 15–40% (compared to < 1% for the excimer lasers often used for similar applications). Consequently IPIB hardware can be compact and require relatively low capital investment. This opens the promise of environmentally conscious, low-cost, high-throughput manufacturing. Further, efficient beam transport to the target and excellent coupling of incident ion energy to targets are achieved, as opposed to lasers that may have limited coupling to reflective materials or produce reflecting plasmas at high incident fluence. The ion range is adjustable through selection of the ion species and kinetic energy, and the beam energy density can be tailored through control of the beam footprint at the target to melt (1–10 J/cm2) or to vaporize (10–50 J/cm2) the target surface. Beam pulse durations are short (≥ 1 μs) to minimize thermal conduction. Some disadvantages of IPIB processing over laser processing include the need to form and propagate the beams in vacuum, and the need for shielding of x-rays produced by relatively low-level electron current present in IPIB accelerators. Also these beams cannot be as tightly focused onto targets as lasers, making them unsuitable for applications requiring treatment on small spatial scales.


MRS Bulletin ◽  
1987 ◽  
Vol 12 (6) ◽  
pp. 30-34 ◽  
Author(s):  
H-J. Gossmann ◽  
L.C. Feldman

AbstractThis article discusses uses of high energy ion beam scattering for materials analysis, including channeling, particle induced x-ray emission (PIXE), and nuclear reaction analysis (NRA). These additional capabilities used in conjunction with RBS equipment provide capabilities for crystalline defect studies and light element detection.


1987 ◽  
Vol 108 ◽  
Author(s):  
M. Takai ◽  
A. Kinomura ◽  
M. Izumi ◽  
K. Matsunaga ◽  
K. Inoue ◽  
...  

ABSTRACTA high-energy (MeV) helium ion beam has been focused down to 1 μm by a combination of piezo-driven objective slits and a magnetic quadrupole doublet. Rutherford backscattering (RBS) mapping techniques using focused MeV ion beams were, for the first time, applied to multilayered structures of metals, isolated with insulators, representing a test structure for multilayered wiring or interconnections of integrated circuits to nondestructively analyze the imperfection of the structures.


1988 ◽  
Vol 100 ◽  
Author(s):  
E. J. Williams ◽  
E. G. Bithell ◽  
C. B. Boothroyd ◽  
W. M. Stobbs ◽  
R. J. Young ◽  
...  

ABSTRACTThe promotion of silicide reactions at the interface between silicon and a metal overlayer is described, the reactions being initiated by scanned ion beams. The relative effects of low and high energy Si+ and Si2+ beams are discussed and the results of subsequent annealing are compared with those seen when using low energy (5keV) argon ion beams. The implications for the writing of metallisation lines are also noted.


1988 ◽  
Vol 100 ◽  
Author(s):  
S. P. Withrow ◽  
A. Lusnikov ◽  
H. J. Jiménez-Gonz´lez- ◽  
G. Dresselhaus

ABSTRACTThe annealing effects of a high energy beam of Cu ions on implanted CdTe crystals are studied. Single crystals of CdTe have been implanted with Eu (energy 60 keV, fluence 1 × 1016 cm−2) at substrate temperatures of 25°C, and 400°C. Lattice damage introduced by the implantation process was measured by Rutherford backscattering. The samples were then implanted with high energy Cu ions (energy 3.5 MeV, fluence 0.5 × 1016 cm−2) at substrate temperatures of 25°C and 200°C. Channeling spectra from these samples indicate a reduction in the near-surface lattice damage as a result of the Cu implantation that can be unambiguously separated from the external heating of the substrate.


Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 551
Author(s):  
Yunchao Zheng ◽  
Shan Li ◽  
Jianzhong Huang ◽  
Haowei Fu ◽  
Libin Zhou ◽  
...  

High-energy ion beams are known to be an effective and unique type of physical mutagen in plants. However, no study on the mutagenic effect of argon (Ar) ion beam radiation on rice has been reported. Genome-wide studies on induced mutations are important to comprehend their characteristics for establishing knowledge-based protocols for mutation induction and breeding, which are still very limited in rice. The present study aimed to investigate the mutagenic effect of three ion beams, i.e., Ar, carbon (C) and neon (Ne) on rice and identify and characterize heritable induced mutations by the whole genome sequencing of six M4 plants. Dose-dependent damage effects were observed on M1 plants, which were developed from ion beam irradiated dry seeds of two indica (LH15, T23) and two japonica (DS551, DS48) rice lines. High frequencies of chlorophyll-deficient seedlings and male-sterile plants were observed in all M2 populations (up to ~30% on M1 plant basis); plants from the seeds of different panicles of a common M1 plant appeared to have different mutations; the whole genome-sequencing demonstrated that there were 236–453 mutations in each of the six M4 plants, including single base substitutions (SBSs) and small insertion/deletions (InDels), with the number of SBSs ~ 4–8 times greater than that of InDels; SBS and InDel mutations were distributed across different genomic regions of all 12 chromosomes, however, only a small number of mutations (0–6) were present in exonic regions that might have an impact on gene function. In summary, the present study demonstrates that Ar, C and Ne ion beam radiation are all effective for mutation induction in rice and has revealed at the genome level the characteristics of the mutations induced by the three ion beams. The findings are of importance to the efficient use of ion beam radiation for the generation and utilization of mutants in rice.


1995 ◽  
Vol 09 (03n04) ◽  
pp. 163-186 ◽  
Author(s):  
LIONEL THOMÉ ◽  
FRÉDÉRICO GARRIDO

This paper describes an original methodology developed to study the atomic transport in a solid target bombarded with energetic ions. This methodology is based on the use of heavy marker atoms introduced in the near-surface layer of the investigated target and the analysis via nuclear microanalysis techniques of the modifications of the marker profile due to ion bombardment. Results obtained in the case of low- or medium-energy (<10 keV/u ) ion irradiation, leading to the well-known ion-beam-mixing process induced by nuclear elastic collisions, are reported in the first part. The second part deals with the less-investigated case of very-high-energy (>1 MeV/u ) ion irradiation, where a dramatic plastic deformation mechanism induced by electronic excitation has been recently discovered.


2008 ◽  
Author(s):  
Tae-Youl Choi ◽  
Dimos Poulikakos

Focused-ion-beam (FIB) is a useful tool for defining nanoscale structures. High energy heavy ions inherently exhibit destructive nature. A less destructive tool has been devised by using electron beam. FIB is mainly considered as an etching tool, while electron beam can be used for deposition purpose. In this paper, both etching and deposition method are demonstrated for applications in thermal science. Thermal conductivity of nanostructures (such as carbon nanotubes) was measured by using the FIB (and electron beam) nanolithography technique. Boiling characteristics was studied in a submicron heater that could be fabricated by using FIB.


Sign in / Sign up

Export Citation Format

Share Document